Chapter 1

Introduction into the group
theory

1.1 Introduction

In these lectures on group theory and its application to the particle physics
there have been considered problems of classification of the particles along
representations of the unitary groups, calculations of various characteristics
of hadrons, have been studied in some detail quark model. First chapter are
dedicated to short introduction into the group theory and theory of group
representations. In some datails there are given unitary groups SU(2) and
SU(3) which play eminent role in modern particle physics. Indeed SU(2)
group 1s aa group of spin and isospin transforation as well as the base of
group of gauge transformations of the electroweak interactons SU(2) x U(1)
of the Salam- Weinberg model. The group SU(3) from the other side is
the base of the model of unitary symmetry with three flavours as well as
the group of colour that is on it stays the whole edifice of the quantum
chromodynamics.

In order to aknowledge a reader on simple examples with the group theory
formalism mass formulae for elementary particles would be analyzed in de-
tail. Other important examples would be calculations of magnetic moments
and axial-vector weak coupling constants in unitary symmetry and quark
models. Formulae for electromagnetic and weak currents are given for both
models and problem of neutral currents is given in some detail. Electroweak



current of the Glashow-Salam-Weinberg model has been constructed. The
notion of colour has been introduced and simple examples with it are given.
Introduction of vector bosons as gauge fields are explained. Author would
try to write lectures in such a way as to enable an eventual reader to perform
calculations of many properties of the elementary particles by oneself.

1.2 Groups and algebras. Basic notions.

Definition of a group

Let be a set of elements G g1, ¢,...,9, ., with the following prop-
erties:

1. There is a multiplication law ¢;g; = ¢;, and if g;,g9; € G, then
99 =g €G,1,3,0l=1,2,...n.

2. There is an associative law g¢;(g;91) = (9:9;) -

3. There exists a unit element ¢, eg; = ¢g;, 1 = 1,2, ..., n.

4. There exists an inverse element g; ', g;'gi = ¢, 7= 1,2,....n.

Then on the set G exists the group of elements g;,gs,..., 9,

As a simple example let us consider rotations on the plane. Let us define
a set ® of rotations on angles ¢.

Let us check the group properties for the elements of this set.

1. Multiplication law is just a summation of angles: ¢; + ¢ = ¢35 € P.

2. Associative law is written as (¢1 + ¢2) + ¢ps = ¢1 + (P2 + ¢P3).

3. The unit element is the rotation on the angle 0(42mn).

4. The inverse element is the rotation on the angle —¢(+27n).

Thus rotations on the plane about some axis perpendicular to this plane
form the group.

Let us consider rotations of the coordinate axes @, vy, z, which define De-
cartes coordinate system in the 3-dimensional space at the angle #; on the
plane zy around the axis z:

z’ cosfs  sinbs 0 T T
y | = | —sinbs coshs 0 y | =Rs(bs) | v (1.1)
Z 0 0 1 z z

Let € be an infinitesimal rotation. Let is expand the rotation matrix Rs(e)



in the Taylor series and take only terms linear in e:

Rs(e) = Rs(0) + % €+ 0(62) =1-+¢Aze+ 0(62), (1.2)

dﬁ e=0
where R3(0) is a unit matrix and it is introduced the matrix

0 — 0
d
0 0 0

de e=0

which we name ’'generator of the rotation around the 3rd axis’ (or z-axis).
Let us choose € = n3/n then the rotation on the angle 93 could be obtained
by n-times application of the operator Rs(€), and in the limit we have

Rs(ns) = lim [Rs(ns/n)]" = lim [1 4 iAgys/n]" = e, (1.4)

Let us consider rotations around the axis y:

z’ cosby, 0 sinb, T T
y | = 0 1 0 y | =Ra02) | v |, (1.5)
Z —sinfy 0 cosh, z z

where a generator of the rotation around the axis ¥ is introduced:

0 0 —2 T
d
I (0 0 o)(y). (1.6)
deezo .
1 0 0 z

Repeat it for the axis z:

z’ 1 0 0 T T
y | =1 0 cosb; sinb, y | =Ri61) | v |, (1.7)
Z 0 —sinb; cosbt; z z

where a generator of the rotation around the axis zy is introduced:

0 O
d
R ( oz-) s
2

dﬁ e=0



Now we can write in the 3-dimensional space rotation of the Descartes coor-
dinate system on the arbitrary angles, for example:

Rl(nl)R2(n2)R3(n3) — eiAml eiA2772 eiA3773

However, usually one defines rotation in the 3-space in some other way, name-
ly by using Euler angles:

R(a7/877) — eiAg,OéeiAQ,BeiA?,’y

functions).
(Usually Cabibbo-Kobayashi-Maskawa matrix is chosen as Vegyr=

—18
C12C13 $12€13 s13€” 13
_ 28 28
= | —S812C23 — €12823513€"*  C19Ca3 — $12823813€"° " 893C13
28 28
812823 — C12€23813€ 1% —C12823 — S$12C23813€° % Ca23C13

Here ¢;; = cos8;j,8;; = sinb;j, (1,5 = 1,2,3), while 6;; - generalized Cabibbo
angles. How to construct it using Eqs.(1.1, 1.5, 1.7) and setting d15 = 07)
Generators A;, [ =1,2,3, satisfy commutation relations

where €5, 1s absolutely antisymmetric tensor of the 3rd rang. Note that
matrices A;, 1 = 1,2, 3, are antisymmetric, while matrices R; are orthogonal,
that is, RT R; = &;;, where index T' means 'transposition’. Rotations could
be completely defined by generators A;,l = 1,2,3,. In other words, the
group of 3-dimensional rotations (as well as any continuous Lie group up
to discrete transformations) could be characterized by its algebra , that
i1s by definition of generators A;,l = 1,2,3,, its linear combinations and
commutation relations.

Definition of algebra

L is the Lie algebra on the field of the real numbers if:

(i) L is a linear space over K (for z € L the law of multipli-
cation to numbers from the set K is defined), (ii) For z,y €L the
commutator is defined as [z,y], and [z,y] has the following prop-
erties: [az,y] = a[z,y], [z,ay] = a[z,y] at a« € K and [z; + z,,y] =
22, ] + [,

[5177:'/1 + y2] = [5177:'/1] + [:B,y2] for all T,y EL;

[z,2] = 0 for all =,y €L;

([, y]z] + [y, z]z] + [[2, ]y] = 0 (Jacobi identity).



1.3 Representations of the Lie groups and
algebras

Before a discussion of representations we should introduce two notions: iso-
morphism and homomorphism.

Definition of isomorphism and homomorphism

Let be given two groups, G and G'.

Mapping f of the group G into the group G’ is called isomorphism or
homomorphis

If flg192) = f(91)f(g2) for any gqig2€G.

This means that if f maps ¢; into ¢; and g» B g5, then f also maps g9, into
9192

However if f(e) maps e into a unit element in G’, the inverse in general
is not true, namely, ¢’ from G’ is mapped by the inverse transformation f~!
into f~*(€’), named the core (orr nucleus) of the homeomorphism.

If the core of the homeomorphism is e from G such one-to-one homeo-
morphism is named isomorphism.

Definition of the representation

Let be given the group G and some linear space L. Representa-
tion of the group G in L we call mapping 7', which to every element
g in the group G put in correspondence linear operator 7'(g) in the
space L in such a way that the following conditions are fulfilled:

(1) T(g192) = T(g1)T(g2) for all g1, g2 € G,

(2) T(e) =1, where 1 is a unit operator in L.

The set of the operators T'(g) is homeomorphic to the group G.

Linear space L is called the representation space, and operators T'(g) are
called representation operators, and they map one-to-one L on L. Because of
that the property (1) means that the representation of the group G into L is
the homeomorphism of the group G into the G* ( group of all linear operators
in B L, with one-to-one correspondence mapping of L in L). If the space L
is finite-dimensional its dimension is called dimension of the representation
T and named as ny. In this case choosing in the space L a basis ey, es, ..., €,,
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it is possible to define operators T'(g) by matrices of the order n:

tll t12 tln

t21 t22 t2n
o=

tnl tn2 tnn

T(g)er =Y tij(g)ej, tle) =1, t(grg2) = t(g1)t(g2).
The matrix t(g) is called a representation matrix 7. If the group G itself
consists from the matrices of the fixed order, then one of the simple represen-
tations is obtained at T'(g) = g ( identical or, better, adjoint representation).

Such adjoint representation has been already considered by us above and
is the set of the orthogonal 3x3 matrices of the group of rotations O(3) in
the 3-dimensional space. Instead the set of antisymmetrical matrices A;,7 =
1,2,3 forms adjoint representation of the corresponding Lie agebra. It is
obvious that upon constructing all the represetations of the given Lie algebra
we indeed construct all the represetations of the corresponding Lie group (up
to discrete transformations).

By the transformations of similarity momobus T'(g9) = A~ 1T(g)A it is
possible to obtain from T'(g) representation 7"(g) = g which is equivalent to
it but, say, more suitable (for example, representation matrix can be obtained
in almost diagonal form).

Let us define a sum of representations T'(g) = T1(g) + T>(g) and say that
a representation is irreducible if it cannot be written as such a sum ( For the
Lie group representations is definition is sufficiently correct).

For search and classification of the irreducible representation (IR) Schurr’s
lemma plays an important role.

Schurr’s lemma: Let be given two IR’s, t*(g) and t°(g), of the group G.
Any matriz B, such that Bt*(g) = tP(g)B for all g € G either is equal to 0
(if t*(g)) and t?(g) are not equivalent) or wpamna is proportional to the unit
matriz AI.

Therefore if B # AI exists which commutes with all matrices of the given
representation T'(g) it means that this T'(g) is reducible. Really,, if T'(g) is
reducible and has the form

ﬂ@zﬂ@+%@=(ﬂ¥)£@),



then X
v 0
b (W0 o
and [T'(g), B] = 0.

For the group of rotations O(3) it is seen that if [4;, B] = 0,7 = 1,2, 3 then
[R!, B] = 0,.i.e., for us it is sufficient to find a matrix B commuting with all
the generators of the given representation, while eigenvalues of such matrix
operator B can be used for classifications of the irreducible representations
(IR’s). This is valid for any Lie group and its algebra.

So, we would like to find all the irreducible representations of finite dimen-
sion of the group of the 3-dimensional rotations, which can be be reduced to
searching of all the sets of hermitian matrices .J; 5 3 satisfying commutation
relations

[Ji, J]] == ’I:Giijk.
There is only one bilinear invariant constructed from generators of the algebra
(of the group): J? = JE + J2 + J2, for which [j2, Ji]=0,i=1,2,3. So IR’s
can be characterized by the index j related to the eigenvalue of the operator
J2.

In order to go further let us return for a moment to the definition of the
representation. Operators T'(g) act in the linear n-dimensional space L,, and
could be realized by n xn matrices where n is the dimension of the irreducible
representation. In this linear space n-dimensional vectors ¥ are defined and
any vector can be written as a linear combination of n arbitrarily chosen
linear independent vectors €;, v = Y.» ; v;€;. In other words, the space L,
is spanned on the n linear independent vectors ¢€; forming basis in L,,. For
example, for the rotation group O(3) any 3-vector can be definned, as we
have already seen by the basic vectors

1 0 0
ez=| 0|, e=1], e=1]20
0 0 1
x
asZ = | y | or & = ze, +ye,+ ze,. And the 3-dimensional representation (
z

adjoint in this case) is realized by the matrices R;,i = 1,2,3. We shall write
it now in a different way.



Our problem is to find matrices J; of a dimension n in the basis of n
linear independent vectrs, and we know, first, commutation reltions [J;, J;] =

€5k Jx, and, the second, that IR’s can be characterized by J2. Besides, it is
possible to perform similarity transformation of the Eqs.(1.8,1.6,1.3,) in such
a way that one of the matrices, say J;, becomes diagonal. Then its diagonal
elements would be eigenvalues of new basical vectors.

L (10— L (1 0
U=—| 0 144 0 |, U'=—F4%|01—4 0 (1.9)
V2l o0 V2l 0 1

7

010
UA -A)U =210 1

In the case of the 3-dimensional representation usually one chooses
L0 V2o
Ji== V2 0 V2 (1.10)
2
0 v2 0

L0 —iv2 0
Jo= < ( V2 0 —iy2 ) (1.11)
2\ o V2 0

10 0
Js=|00 0 |. (1.12)
00 —1

Let us choose basic vectors as

1 0 0
l+1>=(0 |, |1 O>=|[1 |, P1—-1>=1]0],
0 0 1

10



and

J3|]_—|—]_ >= —|—|1—|—1 >, J3|]_ 0>= 0|1‘|‘1 >,
J3gll—1>=—1+1>.

In the theory of angular momentum these quantities form basis of the rep-
resentation with the full angular momentum equal to 1. But they could be
identified with 3-vector in any space, even hypothetical one. For example,
going a little ahead, note that triplet of m-mesons in isotopic space could be
placed into these basic vectors:

i, ml = rEs=1+1>, |7%>=]1 0>.

Let us also write in some details matrices for J = 2, i.e., for the representation
of the dimension n = 2J +1 =5:

1 0 0 0
0 /3/2 0 0

0 \/3/2 0 (1.13)

0 32 0 1

=~

Il
oo OO = O

%‘

—

(\&]

0 0 1 0
0 —i 0 0 0
i 0 —iy3/2 0 0
Jo=10 /32 0 —i/3/2 0 (1.14)
0 0  iy/3/2 0 —i
0 0 0 i 0
200 0 0
010 0 0
Js=[000 0 o0 (1.15)
000 -1 0
000 0 -2

As it should be these matrices satisfy commutation relations [J;, J;] = i€ Jk, 1, J, k =

1,2, 3, 1.e., they realize representation of the dimension 5 of the Lie algebra
corresponding to the rotation group O(3).

11



Basic vectors can be chosen as:

1 0 0
0 1 0
l1+2>=[0], 14+1>=]0], |1 0>=(1],
0 0 0
0 0 0
0 0
0 0
1—-1>=]101], 1-2>=1]0
1 0
0 1

J3]2,42 >= 42|12, 42 >, J3]2,4+1 >=+1|2,+1 >, J5/2,0 >=02,0 >
J3|2, -1 >= —112, -1 >, J5]2,-2>=-2|2,-2 > .

Now let us formally put J = 1/2 although strictly speaking we could
not do it. The obtained matrices up to a factor 1/2 are well known Pauli

matrices:
1/0 1
J1_§(1 0)7
1/0 —:
‘]2_5(7: 0)
1/1 0
‘]3_5(0 —1)

These matrices act in a linear space spanned on two basic 2-dimensional

(0)-(5)

There appears a real possibility to describe states with spin (or isospin)
1/2. But in a correct way it would be possible only in the framework of
another group which contains all the representations of the rotation group
O(3) plus mtoc representations corresponding to states with half-integer spin
(or isospin, for mathematical group it is all the same). This group is SU(2).

Y

vectors

12



1.4 TUnitary unimodular group SU(2)

Now after learning a little the group of 3-dimensional rotations in which
dimension of the minimal nontrivial representation is 3 let us consider more
complex group where there is a representation of the dimension 2. For this
purpose let us take a set of 2 x 2 unitary unimodular Uji.e., UU = 1,
detU = 1. Such matrix U can be written as

_ iopag
U=e ,

ok, k = 1,2,3 being hermitian matrices, 0,1 = 0}, chosen in the form of Pauli
({01
01 = 1 0 ”
({0 —
2= 0
(1 0
2=\o0 -1 )

and ap, k = 1,2,3 are arbitrary real numbers. The matrices U form a group
with the usual multiplying law for matrices and realize identical (adjoint)
represenation of the dimension 2 with two basic 2-dimensional vectors.

Instead Pauli matrices have the same commutation realtions as the gen-
erators of the rotation group O(3). Let us try to relate these matrices with
a usual 3-dimensional vector & = (&1, s, z3). For this purpose to any vector
Z let us attribute comocraBum a quantity X = 7z, :

matrices

a L3 L1 — ’1:2132 .
Xy = ( oy bizy  —gg ) , a,b=12. (1.16)
Its determinant is det X* = —#?, that is it defines square of the vector length.

Taking the set of unitary unimodular matrices U, UTU = 1, detU =1 in 2-
dimensional space, let us define

X' =UXU,

and detX' = det(U'XU) = detX = —#2. We conclude that transformations
U leave invariant the vector length and therefore corresponds to rotations in

13



the 3-dimensional space, and note that U correspond to the same rotation.
Corresponding algebra SU(2) is given by hermitian matrices oy, k = 1,2,3,
with the commutation relations

[O'i, O'j] = 27:€ijk0'k

where U = ei7+%,

And in the same way as in the group of 3-rotations O(3) the representation
of lowest dimension 3 is given by three independent basis vectors,for example
, X,¥,%; in SU(2) 2- dimensional representation is given by two independent

basic spinors ¢, & = 1,2 which could be chosen as

w=(o) 2(v)

The direct product of two spinors ¢® and ¢° can be expanded into the sum
of two irreducible representations (IR’s) just by symmetrizing and antisym-
metrizing the product:

¢ <’ = A" + P+ 0" = gt = T+ T

Symmetric tensor of the 2nd rank has dimension d%s = n(n + 1)/2 and for
n = 2 d%s = 3 which is seen from its matrix representation:

T T
T{oz,B} — 11 12
( Tiy T

and we have taken into account that Ts1y = Ty19).
Antisymmetric tensor of the 2nd rank has dimension d%, = n(n — 1)/2
and for n = 2 d% , = 1 which is also seen from its matrix representation:

0 T
o] _ 12
()

and we have taken into account that Tjs;) = —Tj12) and Tjyq) = —Tjg = 0.
Or instead in values of IR dimensions:

2x2=3+1

14



According to this result absolutely antisymmetric tensor of the 2nd rank e,g
(€12 = —€21 = 1) transforms also as a singlet of the group SU(2) and we can
use it to contract SU(2) indices if needed. This tensor also serves to uprise
and lower indices of spinors and tensors in the SU(2).

€a'g! = uzlug,eaﬁ .

12 2 1 12 2 1
€12 = U UZ€E12 + U U5Ear = (UjUs — U Us)E1a = DetUers = €12

as DetU = 1. (The same for €;.)

1.5 SU(2) as a spinor group

Associating ¢* with the spin functions of the entities of spin 1/2, ¢* = | 1)
and ¢*> = | |) being basis spinors with +1/2 and -1/2 spin projections,
correspondingly, (baryons of spin 1/2 and quarks as we shall see later) we
can form symmetric tensor T1*?} with three components

T g = [ 11),
T = %(qlff +q’q") = %KN 1),

TP = ¢*¢* = | 1)),

and we have introduced 1/4/2 to normalize this component to unity.

Similarly for antisymmetric tensor associating again ¢® with the spin
functions of the entities of spin 1/2 let us write the only component of a
singlet as . .

T8 = e’ = 4°d') = (1 =), (1.17)
and we have introduced 1/4/2 to normalize this component to unity.

Let us for example form the product of the spinor ¢* and its conjugate
spinor gg whose basic vectors could be taken as two rows (1 0) and (0 1).
Now expansion into the sum of the IR’s could be made by subtraction of a
trace (remind that Pauli matrices are traceless)

¢" <45 = (0"9p — 5054 0) + 503079y = T5 + 631,

2
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where Tg' is a traceless tensor of the dimension dy = (n?—1) corresponding to

the vector representation of the group SU(2) having at n = 2 the dimension
3; I being a unit matrix corresponding to the unit (or scalar) IR. Or instead
in values of IR dimensions:

2x2=3+1

The group SU(2) is so little that its representations 7%} and T corresponds
to the same IR of dimension 3 while T1*? corresponds to scalar IR together
with 651. For n # 2 this is not the case as we shall see later.
One more example of expansion of the product of two IR’s is given by
the product
Tl g =

=, 7 - 7¢d" - "+ - P+ ) + (1.18)
2\ 7 - 7¢E+ ¢ -7+ T - ) =
— Tlkdl o likld

or in terms of dimensions:

n(n® — 3n + 2) N n(n® — 1)

n(n—1)/2 xn = 6 3

For n = 2 antisymmetric tensor of the 3rd rank is identically zero. So we
are left with the mixed-symmetry tensor TF*7 of the dimension 2 for n = 2,
that is, which describes spin 1/2 state. It can be contracted with the the
absolutely anisymmetric tensor of the 2nd rank e, to give

e,kT[’k]’ = t'ilv

and tf;l 1s just the IR corresponding to one of two possible constructions of
spin 1/2 state of three 1/2 states (the two of them being antisymmetrized).
The state with the s, = +1/2 is just

= e’ — a'e')e’ = 5| 1 = 11D (119)

(Here ¢ =1, ¢* =)
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The last example would be to form a spinor IR from the product of the
symmetric tensor TU* and a spinor ¢7.

Tl o g =
= Z(q’qjqk +¢¢¢" + "¢ + 74" + FPd + Fdd) + (1.20)
Z(Q’qjqk +¢¢d" - "¢ — ¢ — ¢ — Fd'd) =
— plikiy o plik}i

or in terms of dimensions:

n(n® + 3n + 2) N n(n® —1)

1)/2 =
n(n+1)/2 xn G 3

Symmetric tensor of the 4th rank with the dimension 4 describes the state
of spin S=3/2, (25+1)=4. Instead tensor of mixed symmetry describes state
of spin 1/2 made of three spins 1/2:

eijT{ik}j = Tg

Tg; is just the IR corresponding to the 2nd possible construction of spin 1/2
state of three 1/2 states (with two of them being symmetrized). The state
with the s, = +1/2 is just

1
Tg = —(e122¢'¢'¢* + ear(q’d* + ¢'¢*)q' = (1.21)

NG
= It - 1 - 1)
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1.6 Isospin group SU(2);

Let us consider one of the important applications of the group theory and
of its representations in physics of elementary particles. We would discuss
classification of the elementary particles with the help of group theory. As
a simple example let us consider proton and neutron. It is known for years
that proton and neutron have quasi equal masses and similar properties as
to strong (or nuclear) interactions. That’s why Heisenberg suggested to con-
sider them one state. But for this purpose one should find the group with
the (lowest) nontrivial representation of the dimension 2. Let us try (with
Heisenberg) to apply here the formalism of the group SU(2) which has as
we have seen 2-dimensional spinor as a basis of representation. Let us intro-
duce now a group of isotopic transformations SU(2);. Now define nucleon
as a state with the isotopic spin I = 1/2 with two projections ( proton with
I3 = +1/2 and neutron with I3 = —1/2 ) in this imagined ’isotopic space’
practically in full analogy with introduction of spin in a usual space. Usually
basis of the 2-dimensional representation of the group SU(2) is written as

N:(g),

what means that proton and neutron are defined as

=(0) (%)

Representation of the dimension 2 is realized by Pauli matrices 2 x 2 73, k =

a isotopic spinor (isospinor)

1,2,3 (instead of symbols o;,7 = 1,2, 3 which we reserve for spin 1/2 in usual
space). Note that isotopic operator 7+ = 1/2(7; + i72) transforms neutron
into proton , while 7= = 1/2(7; —iry) instead transforms proton into neutron.

It is known also isodoublet of cascade hyperons of spin 1/2 Z%~ and
masses ~ 1320 MeV. It 1s also known isodoublet of strange mesons of spin 0
K*° and masses ~ 490 MeV and antidublet of its antiparticles K%,

And in what way to describe particles with the isospin I = 17 Say, triplet
of m-mesons 7%, 7™, w° of spin zero and negative parity (pseudoscalar mesons)

with masses m(7¥) = 139,5675 £ 0, 0004 MeV, m(x°) = 134,9739 £ 0, 0006

MeV and practically similar properties as to strong interactions?
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In the group of (isotopic) rotations it would be possible to define isotopic
vector T = (71, Ta, W3) as a basis (where real pseudoscalar fields 7y 5 are relat-
ed to charged pions ¥ by formula 7% = 7! & in?, and 7° = 73), generators
A, 1l =1,2,3, as the algebra representation and matrices R;,l = 1,2, 3 as the
group representation with angles 6, defined in isotopic space. Upon using
results of the previous section we can attribute to isotopic triplet of the real
fields @ = (w1, 72, 73) in the group SU(2); the basis of the form

. ( ™/ V2 <m—m>/ﬁ)z(%ﬂo ﬂ)

T, = . _
b (71 +img) /2 —73/V/2 7 —%77

where charged pions are described by complex fields 7% = (71 F im)/v/2.

So, pions can be given in isotopic formalism as 2-dimensional matrices:

0 1 0 0 L 0
“=(00) m=(10) (T )
00 10 0 -

which form basis of the representation of the dimension 3 whereas the rep-
resentation itself is given by the unitary unimodular matrices 2 x 2 U.

In a similar way it is possible to describe particles of any spin with the
1sospin I = 1. Among meson one should remember isotriplet of the vector
(spin 1) mesons p*° with masses ~ 760 MeV:

1 0 4

( v ) (1.22)
P — 2P

Among particles with half-integer spin note, for example, isotriplet of strange

hyperons found in early 60’s with the spin 1/2 and masses ~1192 MeV L%, X°

which can be writen in the SU(2) basis as

Lx0  wt )
V2 (1 23)
_ 1 9. .
( ¥ —5mY

Representation of dimension 3 is given by the same matrices U.

Let us record once more that experimentally isotopic spin [ is defined as
a number of particles N = (274 1) similar in their properties, that is, having
the same spin, similar masses (equal at the level of percents) and practically
identical along strong interactions. For example, at the mass close to 1115
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MeV it was found only one particle of spin 1/2 with strangeness S=-1 - it is
hyperon A with zero electric charge and mass 1115,63+0, 05 MeV. Naturally,
isospin zero was ascribed to this particle. In the same way isospin zero was
ascribed to pseudoscalar meson 17(548).

It is known also triplet of baryon resonances with the spin 3/2, strangness
S=-1 and masses M(X*+(1385)) = 1382,8 4+ 0,4 MbB, M(X*°(1385)) =
1383,7 + 1,0 M>B, M(X*(1385)) = 1387,2 + 0,5 M5B, (resonances are
elementary particles decaying due to strong interactions and because of that
having very short times of life; one upon a time the question whether they
are 'elementary’ was discussed intensively) £*¥°(1385) — A%7r*0(88 £ 2%)
or %**¥0(1385) — ¥m(12 £ 2%) (one can find instead symbol Y*(1385) for
this resonance).

It is known only one state with isotopic spin I = 3/2 (that is on exper-
iment it were found four practically identical states with different charges)
: a quartet of nucleon resonances of spin J = 3/2 At%(1232), A*T(1232),
A°(1232), A~(1232), decaying into nucleon and pion (measured mass differ-
ence Ma+-Mpo=2,7+0,3 MeV). ( We can use also another symbol N*(1232).)
There are also heavier replics’ of this isotopic quartet with higher spins.

In the system =% 70 it was found only two resonances with spin 3/2
(not measured yet) =%~ with masses ~ 1520 MeV, so they were put into
isodublet with the isospin [ = 1/2.

Isotopic formalism allows not only to classify practically the whole set of
strongly interacting particles (hadrons) in economic way in isotopic multiplet
but also to relate various decay and scattering amplitudes for particles inside
the same isotopic multiplet.

We shall not discuss these relations in detail as they are part of the
relations appearing in the framework of higher symmetries which we start to
consider below.

At the end let us remind Gell-Mann—Nishijima relation between the par-
ticle charge ), 3rd component of the isospin I3 and hypercharge Y = S+ B,
S being strangeness, B being baryon number (41 for baryons, -1 for an-
tibaryons, 0 for mesons):

1
Q:I3—|-§Y-

As @ 1s just the integral over 4th component of electromagnetic current, it
means that the electromagnetic current is just a superposition of the 3rd com-
ponent of isovector current and of the hypercharge current which is isoscalar.

20



1.7 TUnitary symmetry group SU(3)

Let us take now more complex Lie group, namely group of 3-dimensional
unitary unimodular matrices which has played and is playing in modern
particle physics a magnificient role. This group has already 8 parameters.
(An arbitrary complex 3 x 3 matrix depends on 18 real parameters, unitarity
condition cuts them to 9 and unimodularity cuts one more parameter.)
Transition to 8-parameter group SU(3) could be done straightforwardly
from 3-parameter group SU(2) upon changing 2-dimensional unitary uni-
modular matrices U to the 3-dimensional ones and to the corresponding

algebra by changing Pauli matrices 7,k = 1,2,3 to Gell-Mann matrices
Aasax=1,...8:

010 0 —2 0
A= 1 00 Ay = s 0 0 (1.24)
0 00 0 0 O
1 0 0 0 01
da=|0 -1 0 M=]00 0 (1.25)
0 0 O 1 0 0
0 0 —2 0 00
=00 0 =|001 (1.26)
7 0 0 010
0 0 0O 1 1 0 0
M=|0 0 —i d=—|01 0 (1.27)
0 2 O \/§ 0 0 =2
1 1 . 1
[5)\1'7 5)\3'] =1 ijk§)\k
f123 = ]-7f147 = %7]8156 = _%7]“246 = %7]8257 = %7]8346 = %7]8367 = _%7]“458 =

?7 f678 = ?

(In the same way being patient one can construct algebra representation
of the dimension n for any unitary group SU(n) of finite n. ) These matrices
realize 3-dimensional representation of the algebra of the group SU(3) with
the basis spinors

1 0 0
ol,l11].,]o0
0 0 1



Representation of the dimension 8 is given by the matrices 8 x 8 in the
linear space spanned over basis spinors

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
L1 = 0 s Ly = 0 s L3 = 0 Ly = 0 )
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Ty — 0 Lg — 0 Ty — 0 rg — 0
1|’ 0| 0|’ 0|’
0 1 0 0
0 0 1 0
0 0 0 1

But similar to the case of SU(2) where any 3-vector can be written as a
traceless matrix 2 x 2, also here any 8-vector in SU(3) X = (1, ..., xs) can
be put into the form of the 3 x 3 matrix:

Xg

1 8
= %Zkzl AL = (1.28)

1 . .
L3 + %iBg L1 — 1o Lg — 15

1

. 1 .
— ry+ers —x3+ ks Le — ll7
V2 . : 2
Tg+ x5 re + tx7 — 5%

In the left upper angle we see immediately previous expression (1.16) from
SU(2).

The direct product of two spinors ¢® and ¢° can be expanded exactly
at the same manner as in the case of SU(2) (but now «,8 = 1,2,3) into
the sum of two irreducible representations (IR’s) just by symmetrizing and
antisymmetrizing the product:

¢ x ¢’ = 4"+ 0} + Sl - ¢ J =Tl 4Tl (1.29)
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Symmetric tensor of the 2nd rank has dimension d% = n(n + 1)/2 and for
n = 3 d% = 6 which is seen from its matrix representation:

Tll T12 T13
mlasy _ | 12 22 23
T13 T23 T33

and we have taken into account that T1* = Ttk = Tk ( L | 4 k= 1,2,3).
Antisymmetric tensor of the 2nd rank has dimension d} = n(n — 1)/2
and for n = 3 d3 = 3 which is also seen from its matrix representation:

0 t12 t13
T[OL,B] — —t12 0 t23
_t13 _t23 0

and we have taken into account that TUF = — Tk = ¢k (j L | j k= 1,2,3)
and T = 72 = 763 = ¢

In terms of dimensions it would be
nxn=n(n+1)/2lss +n(n—1)/2|aa (1.30)

orforn =33 x3=6+3.

Let us for example form the product of the spinor ¢* and its conjugate
spinor gg whose basic vectors could be taken as three rows (1 0 0), (0 1
0)and (0 0 1). Now expansion into the sum of the IR’s could be made by
subtraction of a trace (remind that Gell-Mann matrices are traceless)

9" < g5 = (¢"qp — % 597¢) + %%‘q”qw =T§ + o5,

where T is a traceless tensor of the dimension dy = (n*—1) corresponding to
the vector representation of the group SU(3) having at n = 3 the dimension
8; I being a unit matrix corresponding to the unit (or scalar) IR. In terms
of dimensions it would be n x 2 = (r? —1) + 1, orforn =33 x3 =8+ 1.

At this point we finish for a moment with a group formalism and make a
transition to the problem of classification of particles along the representation
of the group SU(3) and to some consequencies of it.
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