
Chapter �

Introduction into the group

theory

��� Introduction

In these lectures on group theory and its application to the particle physics
there have been considered problems of classi�cation of the particles along
representations of the unitary groups� calculations of various characteristics
of hadrons� have been studied in some detail quark model� First chapter are
dedicated to short introduction into the group theory and theory of group
representations� In some datails there are given unitary groups SU��	 and
SU��	 which play eminent role in modern particle physics� Indeed SU��	
group is aa group of spin and isospin transforation as well as the base of
group of gauge transformations of the electroweak interactons SU��	�U��	
of the Salam� Weinberg model� The group SU��	 from the other side is
the base of the model of unitary symmetry with three �avours as well as
the group of colour that is on it stays the whole edi�ce of the quantum
chromodynamics�

In order to aknowledge a reader on simple examples with the group theory
formalism mass formulae for elementary particles would be analyzed in de�
tail� Other important examples would be calculations of magnetic moments
and axial�vector weak coupling constants in unitary symmetry and quark
models� Formulae for electromagnetic and weak currents are given for both
models and problem of neutral currents is given in some detail� Electroweak

�



current of the Glashow�Salam�Weinberg model has been constructed� The
notion of colour has been introduced and simple examples with it are given�
Introduction of vector bosons as gauge �elds are explained� Author would
try to write lectures in such a way as to enable an eventual reader to perform
calculations of many properties of the elementary particles by oneself�

��� Groups and algebras� Basic notions�

De�nition of a group
Let be a set of elements G g�� g�� ���� gn �� with the following prop�

erties�
�� There is a multiplication law gigj � gl� and if gi� gj � G� then

gigj � gl � G� i� j� l � �� �� ���� n�
�� There is an associative law gi�gjgl	 � �gigj	gl�
�� There exists a unit element e� egi � gi� i � �� �� ���� n�
�� There exists an inverse element g��i � g��i gi � e� i � �� �� ���� n�
Then on the set G exists the group of elements g�� g�� ���� gn �
As a simple example let us consider rotations on the plane� Let us de�ne

a set � of rotations on angles ��
Let us check the group properties for the elements of this set�
�� Multiplication law is just a summation of angles� �� � �� � �� � ��
�� Associative law is written as ��� � ��	 � �� � �� � ��� � ��	�
�� The unit element is the rotation on the angle �����n	�
�� The inverse element is the rotation on the angle ������n	�
Thus rotations on the plane about some axis perpendicular to this plane

form the group�
Let us consider rotations of the coordinate axes x� y� z� which de�ne De�

cartes coordinate system in the ��dimensional space at the angle �� on the
plane xy around the axis z�
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Let � be an in�nitesimal rotation� Let is expand the rotation matrix R���	
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in the Taylor series and take only terms linear in ��

R���	 � R���	 �
dR�

d� ���
��O���	 � � � iA���O���	� ����	

where R���	 is a unit matrix and it is introduced the matrix

A� � �idR�

d� ���
�

�
B� � �i �

i � �
� � �

�
CA ����	

which we name �generator of the rotation around the �rd axis� �or z�axis	�
Let us choose � � ��	n then the rotation on the angle �� could be obtained
by n�times application of the operator R���	� and in the limit we have

R����	 � lim
n���R����	n	�

n � lim
n���� � iA���	n�

n � eiA���� ����	

Let us consider rotations around the axis U�
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where a generator of the rotation around the axis U is introduced�

A� � �idR�

d� ���
�

�
B� � � �i
� � �
i � �

�
CA
�
B� x

y
z

�
CA � ���
	

Repeat it for the axis x�
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where a generator of the rotation around the axis xU is introduced�
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Now we can write in the ��dimensional space rotation of the Descartes coor�
dinate system on the arbitrary angles� for example�

R����	R����	R����	 � eiA���eiA���eiA���

However� usually one de�nes rotation in the ��space in some other way� name�
ly by using Euler angles�

R�
� �� �	 � eiA��eiA��eiA��

functions	�
�Usually Cabibbo�Kobayashi�Maskawa matrix is chosen as VCKM�

�

�
B� c��c�� s��c�� s��e

�i���

�s��c�� � c��s��s��e
i��� c��c�� � s��s��s��e

i��� s��c��
s��s�� � c��c��s��e

i��� �c��s�� � s��c��s��e
i��� c��c��

�
CA �

Here cij � cos�ij � sij � sin�ij� �i� j � �� �� �	� while �ij � generalized Cabibbo
angles� How to construct it using Eqs������ ���� ���	 and setting 
�� � ��	

Generators Al� l � �� �� �� satisfy commutation relations

Ai �Aj �Aj �Ai � �Ai� Aj� � i�ijkAk� i� j� k � �� �� ��

where �ijk is absolutely antisymmetric tensor of the �rd rang� Note that
matrices Al� l � �� �� �� are antisymmetric� while matrices Rl are orthogonal�
that is� RT

i Rj � 
ij� where index T means �transposition�� Rotations could
be completely de�ned by generators Al� l � �� �� ��� In other words� the
group of ��dimensional rotations �as well as any continuous Lie group up
to discrete transformations	 could be characterized by its algebra � that
is by de�nition of generators Al� l � �� �� ��� its linear combinations and
commutation relations�

De�nition of algebra
L is the Lie algebra on the �eld of the real numbers if�
�i� L is a linear space over k �for x � L the law of multipli�

cation to numbers from the set K is de�ned�� �ii� For x� y �L the
commutator is de�ned as �x� y�� and �x� y� has the following prop�
erties� �
x� y� � 
�x� y�� �x� 
y� � 
�x� y� at 
 � K and �x� � x�� y� �
�x�� y� � �x�� y��

�x� y� � y�� � �x� y�� � �x� y�� for all x� y �L�
�x� x� � � for all x� y �L�
��x� y�z� � ��y� z�x� � ��z� x�y� � � �Jacobi identity��






��� Representations of the Lie groups and

algebras

Before a discussion of representations we should introduce two notions� iso�
morphism and homomorphism�

De�nition of isomorphism and homomorphism
Let be given two groups� G and G��
Mapping f of the group G into the group G� is called isomorphism or

homomorphis

If f�g�g�	 � f�g�	f�g�	 for any g�g� � G�

This means that if f maps g� into g�� and g� W g
�
�� then f also maps g�g� into

g��g
�
��
However if f�e	 maps e into a unit element in G�� the inverse in general

is not true� namely� e� from G� is mapped by the inverse transformation f��

into f���e�	� named the core �orr nucleus	 of the homeomorphism�
If the core of the homeomorphism is e from G such one�to�one homeo�

morphism is named isomorphism�
De�nition of the representation
Let be given the group G and some linear space L� Representa�

tion of the group G in L we call mapping T � which to every element
g in the group G put in correspondence linear operator T �g	 in the
space L in such a way that the following conditions are ful�lled�

��� T �g�g�	 � T �g�	T �g�	 for all g�� g� � G�
��� T �e	 � �� where � is a unit operator in L�
The set of the operators T �g	 is homeomorphic to the group G�
Linear space L is called the representation space� and operators T �g	 are

called representation operators� and they map one�to�one L on L� Because of
that the property ��	 means that the representation of the group G into L is
the homeomorphism of the group G into the G� � group of all linear operators
in W L� with one�to�one correspondence mapping of L in L	� If the space L
is �nite�dimensional its dimension is called dimension of the representation
T and named as nT � In this case choosing in the space L a basis e�� e�� ���� en�
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current of the Glashow�Salam�Weinberg model has been constructed� The
notion of colour has been introduced and simple examples with it are given�
Introduction of vector bosons as gauge �elds are explained� Author would
try to write lectures in such a way as to enable an eventual reader to perform
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in the Taylor series and take only terms linear in ��
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which we name �generator of the rotation around the �rd axis� �or z�axis	�
Let us choose � � ��	n then the rotation on the angle �� could be obtained
by n�times application of the operator R���	� and in the limit we have
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��� Representations of the Lie groups and

algebras

Before a discussion of representations we should introduce two notions� iso�
morphism and homomorphism�

De�nition of isomorphism and homomorphism
Let be given two groups� G and G��
Mapping f of the group G into the group G� is called isomorphism or

homomorphis

If f�g�g�	 � f�g�	f�g�	 for any g�g� � G�

This means that if f maps g� into g�� and g� W g
�
�� then f also maps g�g� into
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However if f�e	 maps e into a unit element in G�� the inverse in general

is not true� namely� e� from G� is mapped by the inverse transformation f��

into f���e�	� named the core �orr nucleus	 of the homeomorphism�
If the core of the homeomorphism is e from G such one�to�one homeo�

morphism is named isomorphism�
De�nition of the representation
Let be given the group G and some linear space L� Representa�

tion of the group G in L we call mapping T � which to every element
g in the group G put in correspondence linear operator T �g	 in the
space L in such a way that the following conditions are ful�lled�

��� T �g�g�	 � T �g�	T �g�	 for all g�� g� � G�
��� T �e	 � �� where � is a unit operator in L�
The set of the operators T �g	 is homeomorphic to the group G�
Linear space L is called the representation space� and operators T �g	 are

called representation operators� and they map one�to�one L on L� Because of
that the property ��	 means that the representation of the group G into L is
the homeomorphism of the group G into the G� � group of all linear operators
in W L� with one�to�one correspondence mapping of L in L	� If the space L
is �nite�dimensional its dimension is called dimension of the representation
T and named as nT � In this case choosing in the space L a basis e�� e�� ���� en�
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it is possible to de�ne operators T �g	 by matrices of the order n�

t�g	 �

�
BBB�

t�� t�� ��� t�n
t�� t�� ��� t�n
��� ��� ��� ���
tn� tn� ��� tnn

�
CCCA �

T �g	ek �
X

tij�g	ej� t�e	 � �� t�g�g�	 � t�g�	t�g�	�

The matrix t�g	 is called a representation matrix T� If the group G itself
consists from the matrices of the �xed order� then one of the simple represen�
tations is obtained at T �g	 � g � identical or� better� adjoint representation	�

Such adjoint representation has been already considered by us above and
is the set of the orthogonal ��� matrices of the group of rotations O��	 in
the ��dimensional space� Instead the set of antisymmetrical matrices Ai� i �
�� �� � forms adjoint representation of the corresponding Lie agebra� It is
obvious that upon constructing all the represetations of the given Lie algebra
we indeed construct all the represetations of the corresponding Lie group �up
to discrete transformations	�

By the transformations of similarity PODOBIQ T ��g	 � A��T �g	A it is
possible to obtain from T �g	 representation T ��g	 � g which is equivalent to
it but� say� more suitable �for example� representation matrix can be obtained
in almost diagonal form	�

Let us de�ne a sum of representations T �g	 � T��g	 � T��g	 and say that
a representation is irreducible if it cannot be written as such a sum � For the
Lie group representations is de�nition is su�ciently correct	�

For search and classi�cation of the irreducible representation �IR	 Schurr�s
lemma plays an important role�

Schurr�s lemma� Let be given two IR�s� t��g	 and t��g	� of the group G�
Any matrix w � such that wt��g	 � t��g	B for all g � G either is equal to �
�if t��g	� and t��g	 are not equivalent� or KRATNA is proportional to the unit
matrix �I�

Therefore if B �� �I exists which commutes with all matrices of the given
representation T �g	 it means that this T �g	 is reducible� Really�� if T �g	 is
reducible and has the form

T �g	 � T��g	 � T��g	 �

�
T��g	 �
� T��g	

�
�

�



then

B �

�
��I

� �
� ��I

�

�
�� �I

and �T �g	� B� � ��
For the group of rotations O��	 it is seen that if �Ai� B� � �� i � �� �� � then

�Ri� B� � ���i�e�� for us it is su�cient to �nd a matrix B commuting with all
the generators of the given representation� while eigenvalues of such matrix
operator B can be used for classi�cations of the irreducible representations
�IR�s	� This is valid for any Lie group and its algebra�

So� we would like to �nd all the irreducible representations of �nite dimen�
sion of the group of the ��dimensional rotations� which can be be reduced to
searching of all the sets of hermitian matrices J����� satisfying commutation
relations

�Ji� Jj� � i�ijkJk�

There is only one bilinear invariant constructed from generators of the algebra
�of the group	� �J� � J�

� � J�
� � J�

� � for which � �J
�� Ji� � �� i � �� �� �� So IR�s

can be characterized by the index j related to the eigenvalue of the operator
�J��
In order to go further let us return for a moment to the de�nition of the

representation� Operators T �g	 act in the linear n�dimensional space Ln and
could be realized by n�nmatrices where n is the dimension of the irreducible
representation� In this linear space n�dimensional vectors �v are de�ned and
any vector can be written as a linear combination of n arbitrarily chosen
linear independent vectors �ei� �v �

Pn
i�� vi�ei� In other words� the space Ln

is spanned on the n linear independent vectors �ei forming basis in Ln� For
example� for the rotation group O��	 any ��vector can be de�nned� as we
have already seen by the basic vectors

ex �

�
B� �
�
�

�
CA � ey �

�
B� �
�
�

�
CA � ez �

�
B� �
�
�

�
CA

as �x �

�
B� x

y
z

�
CA or �x � xex�yey�zez� And the ��dimensional representation �

adjoint in this case	 is realized by the matrices Ri� i � �� �� �� We shall write
it now in a di�erent way�






Our problem is to �nd matrices Ji of a dimension n in the basis of n
linear independent vectrs� and we know� �rst� commutation reltions �Ji� Jj� �

i�ijkJk� and� the second� that IR�s can be characterized by �J�� Besides� it is
possible to perform similarity transformation of the Eqs��������
�����	 in such
a way that one of the matrices� say J�� becomes diagonal� Then its diagonal
elements would be eigenvalues of new basical vectors�
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�
B� � � �i

� � � i �
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In the case of the ��dimensional representation usually one chooses
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� �
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� � �ip�
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p
� �

�
CA �����	

J� �

�
B� � � �
� � �
� � ��

�
CA � �����	

Let us choose basic vectors as

j� � � ��
�
B� �
�
�

�
CA � j� � ��

�
B� �
�
�

�
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�
B� �
�
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and
J�j� � � �� �j� � � �� J�j� � �� �j� � � ��

J�j�� � �� �j� � � � �

In the theory of angular momentum these quantities form basis of the rep�
resentation with the full angular momentum equal to �� But they could be
identi�ed with ��vector in any space� even hypothetical one� For example�
going a little ahead� note that triplet of ��mesons in isotopic space could be
placed into these basic vectors�

��� ��� �� � j�� �� j� � � �� j�� �� j� � � �

Let us also write in some details matrices for J � �� i�e�� for the representation
of the dimension n � �J � � � ��

J� �

�
BBBBBBBB�

� � � � �

� �
q
�	� � �

�
q
�	� �

q
�	� �

� �
q
�	� � �

� � � � �

�
CCCCCCCCA

�����	

J� �

�
BBBBBBBB�

� �i � � �

i � �i
q
�	� � �

� i
q
�	� � �i

q
�	� �

� � i
q
�	� � �i

� � � i �

�
CCCCCCCCA

�����	

J� �

�
BBBBBB�

� � � � �
� � � � �
� � � � �
� � � �� �
� � � � ��

�
CCCCCCA

�����	

As it should be these matrices satisfy commutation relations �Ji� Jj� � i�ijkJk� i� j� k �
�� �� �� i�e�� they realize representation of the dimension � of the Lie algebra
corresponding to the rotation group O��	�

��



Basic vectors can be chosen as�

j� � � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
� j� � � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
� j� � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
�

j� � � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
� j�� � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
�

J�j���� �� ��j���� �� J�j���� �� ��j���� �� J�j�� � �� �j�� � �
� J�j���� �� ��j���� �� J�j���� �� ��j���� � �

Now let us formally put J � �	� although strictly speaking we could
not do it� The obtained matrices up to a factor �	� are well known Pauli
matrices�

J� �
�

�

�
� �
� �

�
�

J� �
�

�

�
� �i
i �

�

J� �
�

�

�
� �
� ��

�

These matrices act in a linear space spanned on two basic ��dimensional
vectors �

�
�

�
�

�
�
�

�
�

There appears a real possibility to describe states with spin �or isospin	
���� But in a correct way it would be possible only in the framework of
another group which contains all the representations of the rotation group
O��	 plus PL�S representations corresponding to states with half�integer spin
�or isospin� for mathematical group it is all the same	� This group is SU��	�

��



��� Unitary unimodular group SU���

Now after learning a little the group of ��dimensional rotations in which
dimension of the minimal nontrivial representation is � let us consider more
complex group where there is a representation of the dimension �� For this
purpose let us take a set of � � � unitary unimodular U �i�e�� U yU � ��
detU � �� Such matrix U can be written as

U � ei	kak�

�k� k � �� �� � being hermitian matrices� �
y
k � �k� chosen in the form of Pauli

matrices

�� �

�
� �
� �

�
�

�� �

�
� �i
i �

�

�� �

�
� �
� ��

�
�

and ak� k � �� �� � are arbitrary real numbers� The matrices U form a group
with the usual multiplying law for matrices and realize identical �adjoint	
represenation of the dimension � with two basic ��dimensional vectors�

Instead Pauli matrices have the same commutation realtions as the gen�
erators of the rotation group O��	� Let us try to relate these matrices with
a usual ��dimensional vector �x � �x�� x�� x�	� For this purpose to any vector
�x let us attribute SOPOSTAWIM a quantity X � ���x� �

Xa
b �

�
x� x� � ix�

x� � ix� �x�

�
� a� b � �� �� ����
	

Its determinant is detXa
b � ��x�� that is it de�nes square of the vector length�

Taking the set of unitary unimodular matrices U � U yU � �� detU � � in ��
dimensional space� let us de�ne

X � � U yXU�

and detX � � det�U yXU	 � detX � ��x�� We conclude that transformations
U leave invariant the vector length and therefore corresponds to rotations in

��



the ��dimensional space� and note that �U correspond to the same rotation�
Corresponding algebra SU��	 is given by hermitian matrices �k� k � �� �� ��
with the commutation relations

��i� �j� � �i�ijk�k

where U � ei	kak �
And in the same way as in the group of ��rotations O��	 the representation

of lowest dimension � is given by three independent basis vectors�for example
� x�y�z� in SU��	 �� dimensional representation is given by two independent
basic spinors q�� 
 � �� � which could be chosen as

q� �

�
�
�

�
� q�

�
�
�

�
�

The direct product of two spinors q� and q� can be expanded into the sum
of two irreducible representations �IR�s	 just by symmetrizing and antisym�
metrizing the product�

q� � q� �
�

�
fq�q� � q�q�g� �

�
�q�q� � q�q�� � T f��g� T �����

Symmetric tensor of the �nd rank has dimension dnSS � n�n � �		� and for
n � � d�SS � � which is seen from its matrix representation�

T f��g �

�
T�� T��
T�� T��

�

and we have taken into account that Tf��g � Tf��g�
Antisymmetric tensor of the �nd rank has dimension dnAA � n�n � �		�

and for n � � d�AA � � which is also seen from its matrix representation�

T ���� �

�
� T��

�T�� �

�

and we have taken into account that T���� � �T���� and T���� � �T���� � ��
Or instead in values of IR dimensions�

�� � � � � ��

��



According to this result absolutely antisymmetric tensor of the �nd rank ���
���� � ���� � �	 transforms also as a singlet of the group SU��	 and we can
use it to contract SU��	 indices if needed� This tensor also serves to uprise
and lower indices of spinors and tensors in the SU��	�

����� � u���u
�
����� �

��� � u��u
�
���� � u��u

�
���� � �u

�
�u

�
� � u��u

�
�	��� � DetU��� � ���

as DetU � �� �The same for ����	

��� SU ��� as a spinor group

Associating q� with the spin functions of the entities of spin ���� q� � j 	i
and q� � j 
i being basis spinors with ���� and ���� spin projections�
correspondingly� �baryons of spin ��� and quarks as we shall see later	 we
can form symmetric tensor T f��g with three components

T f��g � q�q� � j 		i�

T f��g �
�p
�
�q�q� � q�q�	 � �p

�
j�	
 � 
		i�

T f��g � q�q� � j 

i�
and we have introduced �	

p
� to normalize this component to unity�

Similarly for antisymmetric tensor associating again q� with the spin
functions of the entities of spin ��� let us write the only component of a
singlet as

T ���� �
�p
�
�q�q� � q�q�	 � �p

�
j�	
 � 
		i� �����	

and we have introduced �	
p
� to normalize this component to unity�

Let us for example form the product of the spinor q� and its conjugate
spinor q� whose basic vectors could be taken as two rows �� �	 and �� �	�
Now expansion into the sum of the IR�s could be made by subtraction of a
trace �remind that Pauli matrices are traceless	

q� � q� � �q
�q� � �

�

��q

�q�	 �
�

�

��q

�q� � T �
� � 
��I�

��



where T �
� is a traceless tensor of the dimension dV � �n

���	 corresponding to
the vector representation of the group SU��	 having at n � � the dimension
�� I being a unit matrix corresponding to the unit �or scalar	 IR� Or instead
in values of IR dimensions�

�� � � � � ��

The group SU��	 is so little that its representations T f��g and T �
� corresponds

to the same IR of dimension � while T ���� corresponds to scalar IR together
with 
��I� For n �� � this is not the case as we shall see later�

One more example of expansion of the product of two IR�s is given by
the product

T �ij� � qk �

�
�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 � �����	

�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 �

� T �ikj� � T �ik�j

or in terms of dimensions�

n�n� �		� � n �
n�n� � �n � �	



�
n�n� � �	

�
�

For n � � antisymmetric tensor of the �rd rank is identically zero� So we
are left with the mixed�symmetry tensor T �ik�j of the dimension � for n � ��
that is� which describes spin ��� state� It can be contracted with the the
absolutely anisymmetric tensor of the �nd rank eik to give

eikT
�ik�j � tjA�

and tjA is just the IR corresponding to one of two possible constructions of
spin ��� state of three ��� states �the two of them being antisymmetrized	�
The state with the sz � ��	� is just

t�A �
�p
�
�q�q� � q�q�	q� � �p

�
j 	
	 � 
		i� ����
	

�Here q� �	� q� �
�	

�




The last example would be to form a spinor IR from the product of the
symmetric tensor T fikg and a spinor qj�

T fijg � qk �

�
�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 � �����	

�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 �

� T fikjg � T fikgj

or in terms of dimensions�

n�n� �		� � n �
n�n� � �n� �	



�
n�n� � �	

�
�

Symmetric tensor of the �th rank with the dimension � describes the state
of spin S����� ��S��	��� Instead tensor of mixed symmetry describes state
of spin ��� made of three spins ����

eijT
fikgj � T k

S �

T j
S is just the IR corresponding to the �nd possible construction of spin ���
state of three ��� states �with two of them being symmetrized	� The state
with the sz � ��	� is just

T �
S �

�p


�e���q

�q�q� � e���q
�q� � q�q�	q� � �����	

� �p


j� 		
 � 	
	 � 
		i�

��



��	 Isospin group SU ���I

Let us consider one of the important applications of the group theory and
of its representations in physics of elementary particles� We would discuss
classi�cation of the elementary particles with the help of group theory� As
a simple example let us consider proton and neutron� It is known for years
that proton and neutron have quasi equal masses and similar properties as
to strong �or nuclear	 interactions� That�s why Heisenberg suggested to con�
sider them one state� But for this purpose one should �nd the group with
the �lowest	 nontrivial representation of the dimension �� Let us try �with
Heisenberg	 to apply here the formalism of the group SU��	 which has as
we have seen ��dimensional spinor as a basis of representation� Let us intro�
duce now a group of isotopic transformations SU��	I � Now de�ne nucleon
as a state with the isotopic spin I � �	� with two projections � proton with
I� � ��	� and neutron with I� � ��	� 	 in this imagined �isotopic space�
practically in full analogy with introduction of spin in a usual space� Usually
basis of the ��dimensional representation of the group SU��	I is written as
a isotopic spinor �isospinor	

N �

�
p
n

�
�

what means that proton and neutron are de�ned as

p �

�
�
�

�
� n �

�
�
�

�
�

Representation of the dimension � is realized by Pauli matrices �� � �k� k �
�� �� � � instead of symbols �i� i � �� �� � which we reserve for spin ��� in usual
space	� Note that isotopic operator �� � �	���� � i��	 transforms neutron
into proton � while �� � �	�����i��	 instead transforms proton into neutron�

It is known also isodoublet of cascade hyperons of spin ��� ���� and
masses � ���� MeV� It is also known isodoublet of strange mesons of spin �
K��� and masses � �
� MeV and antidublet of its antiparticles �K����

And in what way to describe particles with the isospin I � �� Say� triplet
of ��mesons ��� ��� �� of spin zero and negative parity �pseudoscalar mesons	
with masses m���	 � ��
� �
�� � �� ���� MeV� m���	 � ���� 
��
 � �� ���

MeV and practically similar properties as to strong interactions�

��



In the group of �isotopic	 rotations it would be possible to de�ne isotopic
vector �� � ���� ��� ��	 as a basis �where real pseudoscalar �elds ���� are relat�
ed to charged pions �� by formula �� � �� � i��� and �� � ��	� generators
Al� l � �� �� �� as the algebra representation and matrices Rl� l � �� �� � as the
group representation with angles �k de�ned in isotopic space� Upon using
results of the previous section we can attribute to isotopic triplet of the real
�elds �� � ���� ��� ��	 in the group SU��	I the basis of the form

�ab �

�
��	

p
� ��� � i��		

p
�

��� � i��		
p
� ���	

p
�

�
�
� �p

�
�� ��

�� � �p
�
��

�
�

where charged pions are described by complex �elds �� � ��� � i��		
p
��

So� pions can be given in isotopic formalism as ��dimensional matrices�

�� �

�
� �
� �

�
� �� �

�
� �
� �

�
� �� �

� �p
�

�

� � �p
�

�
�

which form basis of the representation of the dimension � whereas the rep�
resentation itself is given by the unitary unimodular matrices � � � U�

In a similar way it is possible to describe particles of any spin with the
isospin I � �� Among meson one should remember isotriplet of the vector
�spin �	 mesons ���� with masses � �
� MeV�

� �p
�
�� ��

�� � �p
�
��

�
� �����	

Among particles with half�integer spin note� for example� isotriplet of strange
hyperons found in early 
��s with the spin ��� and masses ���
� MeV �� �

which can be writen in the SU��	 basis as

� �p
�
 �  �

 � � �p
�
 �

�
� � �����	

Representation of dimension � is given by the same matrices U �
Let us record once more that experimentally isotopic spin I is de�ned as

a number of particles N � ��I��	 similar in their properties� that is� having
the same spin� similar masses �equal at the level of percents	 and practically
identical along strong interactions� For example� at the mass close to ����

�




MeV it was found only one particle of spin ��� with strangeness S��� � it is
hyperon ! with zero electric charge and mass ����� 
���� �� MeV� Naturally�
isospin zero was ascribed to this particle� In the same way isospin zero was
ascribed to pseudoscalar meson �����	�

It is known also triplet of baryon resonances with the spin ���� strangness
S��� and masses M� �������		 � ����� � � �� � m�w� M� �������		 �
����� � � �� � m�w� M� �������		 � ����� � � �� � m�w� �resonances are
elementary particles decaying due to strong interactions and because of that
having very short times of life� one upon a time the question whether they
are �elementary� was discussed intensively	  ���������	 � !�������� � �"	
or  ���������	 �  ���� � �"	 �one can �nd instead symbol Y �

� �����	 for
this resonance	�

It is known only one state with isotopic spin I � �	� �that is on exper�
iment it were found four practically identical states with di�erent charges	
� a quartet of nucleon resonances of spin J � �	� #�������	� #������	�
#������	� #������	� decaying into nucleon and pion �measured mass di�er�
enceM	� �M	�� ������� MeV	� � We can use also another symbolN������	�	
There are also heavier �replics� of this isotopic quartet with higher spins�

In the system �������� it was found only two resonances with spin ���
�not measured yet	 ����� with masses � ���� MeV� so they were put into
isodublet with the isospin I � �	��

Isotopic formalism allows not only to classify practically the whole set of
strongly interacting particles �hadrons	 in economic way in isotopic multiplet
but also to relate various decay and scattering amplitudes for particles inside
the same isotopic multiplet�

We shall not discuss these relations in detail as they are part of the
relations appearing in the framework of higher symmetries which we start to
consider below�

At the end let us remind Gell�Mann$Nishijima relation between the par�
ticle charge Q� �rd component of the isospin I� and hypercharge Y � S�B�
S being strangeness� B being baryon number ��� for baryons� �� for an�
tibaryons� � for mesons	�

Q � I� �
�

�
Y�

As Q is just the integral over �th component of electromagnetic current� it
means that the electromagnetic current is just a superposition of the �rd com�
ponent of isovector current and of the hypercharge current which is isoscalar�

��



��
 Unitary symmetry group SU���

Let us take now more complex Lie group� namely group of ��dimensional
unitary unimodular matrices which has played and is playing in modern
particle physics a magni�cient role� This group has already � parameters�
�An arbitrary complex ��� matrix depends on �� real parameters� unitarity
condition cuts them to 
 and unimodularity cuts one more parameter�	

Transition to ��parameter group SU��	 could be done straightforwardly
from ��parameter group SU��	 upon changing ��dimensional unitary uni�
modular matrices U to the ��dimensional ones and to the corresponding
algebra by changing Pauli matrices �k� k � �� �� � to Gell�Mann matrices
��� 
 � �� ��� ��

�� �

�
B� � � �
� � �
� � �

�
CA �� �

�
B� � �i �

i � �
� � �

�
CA �����	

�� �

�
B� � � �
� �� �
� � �

�
CA �
 �

�
B� � � �
� � �
� � �

�
CA �����	

�� �

�
B� � � �i
� � �
i � �

�
CA �� �

�
B� � � �
� � �
� � �

�
CA ����
	

�
 �

�
B� � � �
� � �i
� i �

�
CA �� �

�p
�

�
B� � � �
� � �
� � ��

�
CA �����	

�
�

�
�i�
�

�
�j� � ifijk

�

�
�k

f��� � �� f�

 �
�
�
� f��� � ��

�
� f�
� �

�
�
� f��
 �

�
�
� f�
� �

�
�
� f��
 � ��

�
� f
�� �p

�
� � f�
� �

p
�
� �

�In the same way being patient one can construct algebra representation
of the dimension n for any unitary group SU�n	 of �nite n� 	 These matrices
realize ��dimensional representation of the algebra of the group SU��	 with
the basis spinors �

B� �
�
�

�
CA �
�
B� �
�
�

�
CA �
�
B� �
�
�

�
CA �

��



Representation of the dimension � is given by the matrices � � � in the
linear space spanned over basis spinors

x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�x
 �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�

x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�x
 �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�

But similar to the case of SU��	 where any ��vector can be written as a
traceless matrix � � �� also here any ��vector in SU��	 X � �x�� ���� x�	 can
be put into the form of the � � � matrix�

X�
� �

�p
�

X�

k��
�kxk � �����	

�p
�

�
BB�

x� �
�p
�
x� x� � ix� x
 � ix�

x� � ix� �x� � �p
�
x� x� � ix


x
 � ix� x� � ix
 � �p
�
x�

�
CCA �

In the left upper angle we see immediately previous expression ����
	 from
SU��	�

The direct product of two spinors q� and q� can be expanded exactly
at the same manner as in the case of SU��	 �but now 
� � � �� �� �	 into
the sum of two irreducible representations �IR�s	 just by symmetrizing and
antisymmetrizing the product�

q� � q� �
�

�
fq�q� � q�q�g� �

�
�q�q� � q�q�� � T f��g� T ����� ����
	

��



Symmetric tensor of the �nd rank has dimension dnS � n�n � �		� and for
n � � d�S � 
 which is seen from its matrix representation�

T f��g �

�
B� T �� T �� T ��

T �� T �� T ��

T �� T �� T ��

�
CA

and we have taken into account that T fikg � T fkig � T ik �i �� k� i� k � �� �� �	�
Antisymmetric tensor of the �nd rank has dimension dnA � n�n � �		�

and for n � � d�A � � which is also seen from its matrix representation�

T ���� �

�
B� � t�� t��

�t�� � t��

�t�� �t�� �

�
CA

and we have taken into account that T �ik� � �T �ki� � tik �i �� k� i� k � �� �� �	
and T ���� � T ���� � T ���� � ��

In terms of dimensions it would be

n� n � n�n � �		�jSS � n�n � �		�jAA �����	

or for n � � � � � � 
 � ���
Let us for example form the product of the spinor q� and its conjugate

spinor q� whose basic vectors could be taken as three rows �� � �	� �� �
�	and �� � �	� Now expansion into the sum of the IR�s could be made by
subtraction of a trace �remind that Gell�Mann matrices are traceless	

q� � q� � �q
�q� � �

n

��q

�q�	 �
�

n

��q

�q� � T �
� � 
��I�

where T �
� is a traceless tensor of the dimension dV � �n

���	 corresponding to
the vector representation of the group SU��	 having at n � � the dimension
�� I being a unit matrix corresponding to the unit �or scalar	 IR� In terms
of dimensions it would be n� �n � �n� � �	 � �n or for n � � � � �� � � � ��

At this point we �nish for a moment with a group formalism and make a
transition to the problem of classi�cation of particles along the representation
of the group SU��	 and to some consequencies of it�

��




