

АТОМНЫЕ ЯДРА.

РАДИОАКТИВНОСТЬ

Известно ~300 стабильных ядер и ~3500 радиоактивных ядер. Это только часть радиоактивных ядер. Всего их может быть ~7000.

Характеристики протона, нейтрона и электрона

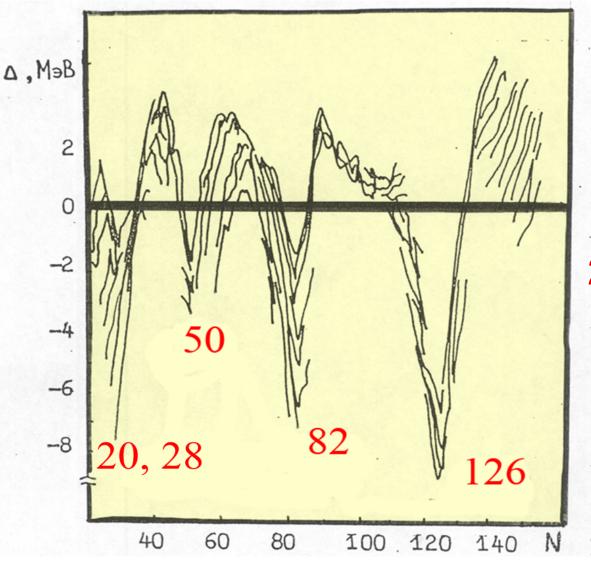
Характеристика	Протон	Нейтрон	Электрон
Macca <i>mc</i> ² , МэВ	938.272	939.565	0.511
Электрический заряд (в единицах элементарного заряда)	+1	0	-1
Спин	1/2	1/2	1/2
Изоспин	1/2	1/2	
Проекция изоспина	+1/2	-1/2	
Чётность	+1	+1	
Статистика	Ферми-Дирака		
Магнитный момент (для нуклонов - в ядерных магнетонах, для электрона - в магнетонах Бора)	+2.79	-1.91	+1.001
Время жизни	> 10 ³² лет	885.7±0.8 c	>4.6·10 ²⁶ лет
Тип распада		$n \rightarrow p + e^- + \overline{\nu}_e$	

Энергия связи ядра W(A,Z)

Энергия связи ядра W(A,Z) – минимальная энергия, которую необходимо затратить для того, чтобы разделить атомное ядро на отдельные составляющие его нейтроны и протоны.

$$M(A,Z)c^{2} + W(A,Z) =$$

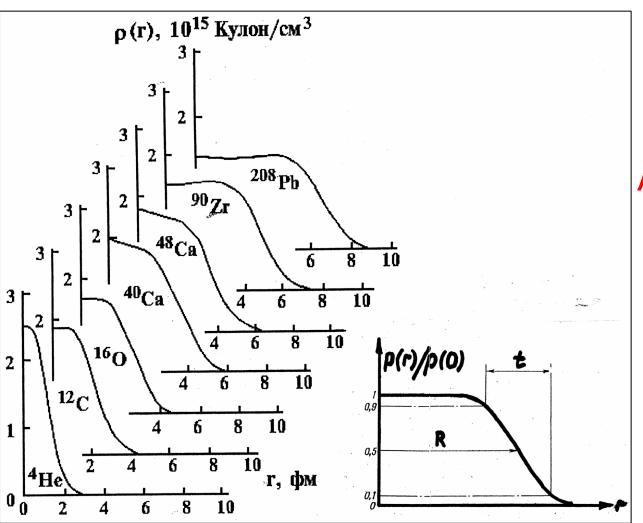
$$= Z \cdot m_{p}c^{2} + (A-Z)m_{n}c^{2}$$


Энергия связи ядра W(A,Z)

Формула Бете-Вайцзеккера

$$W(A,Z) = \alpha A - \beta A^{2/3} - \gamma \frac{Z(Z-1)}{A^{1/3}} - \delta \frac{(A-2Z)^2}{A} + \zeta A^{-3/4}$$

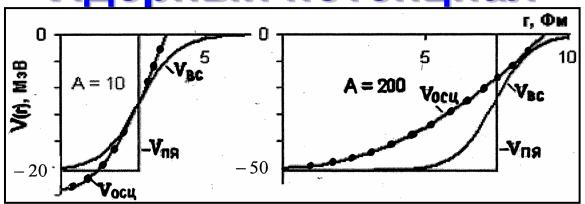
$$lpha=15.6$$
 МэВ, $eta=17.2$ МэВ, $\gamma=0.72$ МэВ, $\delta=23.6$ МэВ. $\zeta=+34$ МэВ — чётно-чётные ядра; $\zeta=0$ — нечётные ядра; $\zeta=-34$ МэВ — нечётно-нечётные ядра. $\zeta=-34$ МэВ — нечётно-нечётные ядра. $\zeta=-34$ МэВ — нечётно-нечётные $\zeta=-34$ МэВ — нечётные $\zeta=-34$ МэВ — нечётные


Магические числа

Магические числа 2, 8, 20, 28, 50, 82, 126

∆ – разница между экспериментально измеренной энергией связи ядра и результатами расчета по формуле Бете-Вайцзеккера.

Размер ядра


Радиальное распределение плотности заряда в различных ядрах

$$\rho(r) = \frac{\rho(0)}{\frac{r-R}{a}}$$

$$1 + e^{-a}$$

$$R = 1.2 \cdot A^{1/3} \Phi M$$

 $t = 4.4a = 2.5 \Phi M$

Ядерный потенциал

Прямоугольный потенциал V_{ns}

$$V_{ns}(r) = \begin{cases} -V_0, & r \leq R, \\ 0, & r \geq R. \end{cases}$$

Осцилляторный потенциал V_{ocu}

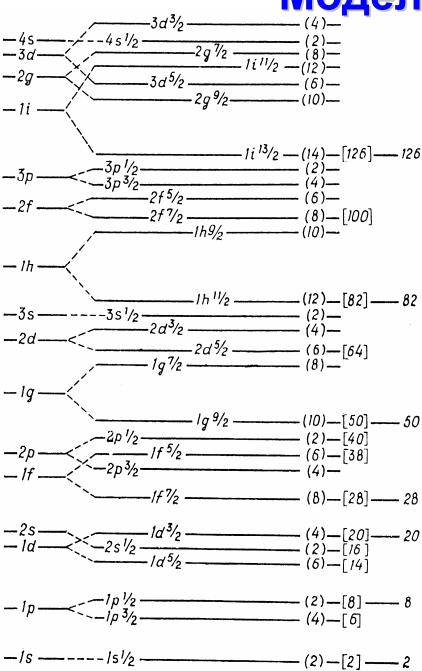
$$V_{ocu}(r) = -V_0 + \frac{1}{2}M\omega^2 r^2,$$

Потенциал Вудса-Саксона V_{BC}

$$V_{BC}(r) = -\frac{V_0}{1 + e^{\frac{r-R}{a}}}.$$

Потенциал нуклон-нуклонного взаимодействия

$$V = V_{1}(r) + V_{2}(r)(\vec{s}_{1}\vec{s}_{2})$$


$$+V_{3}(r)(\vec{s}_{1}\vec{n})(\vec{s}_{2}\vec{n})$$

$$+V_{4}(r)(\vec{L}\vec{s})$$

Нуклон-нуклонное взаимодействие можно описать с помощью потенциала, зависящего от нескольких величин:

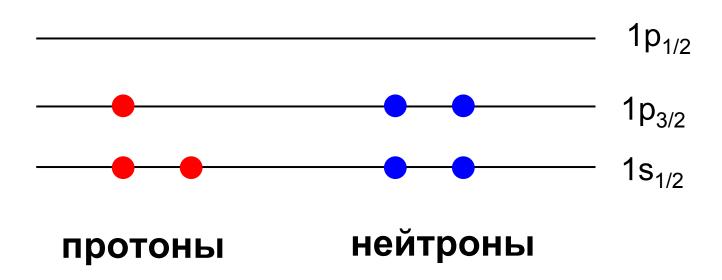
- расстояния между нуклонами,
- взаимной ориентации спинов нуклонов,
- нецентрального характера ядерных сил,
- величины спин-орбитального взаимодействия.

Модель оболочек

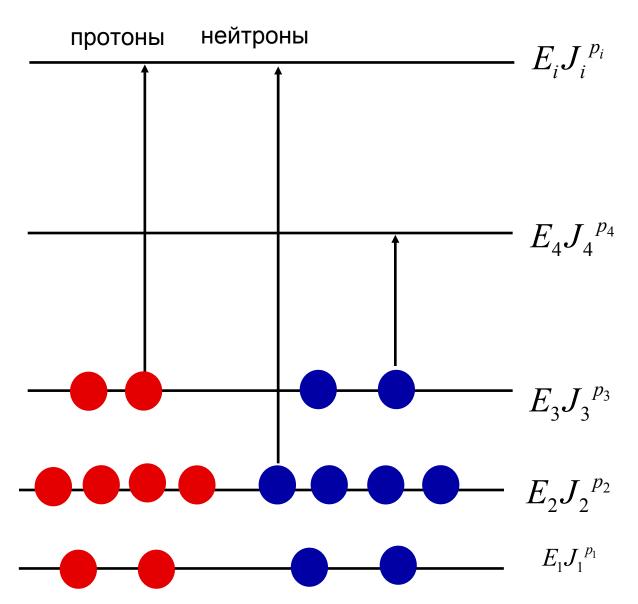
Одночастичные уровни в сферически-симметричном потенциале.

 $|nljj_z\rangle$

$$-2s - 1d - 2s \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{(4) - [20] - 2}{(2) - [16]}$$

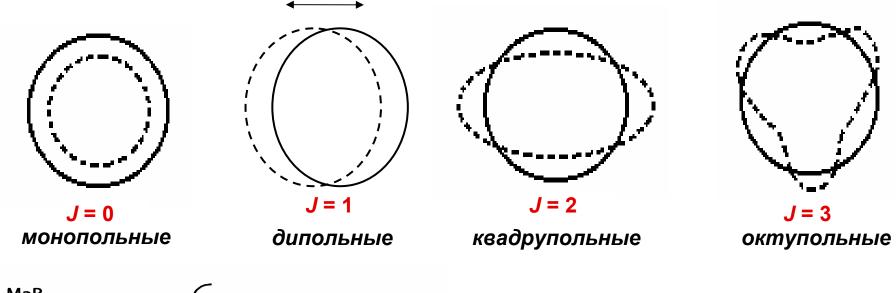

$$-1p - \frac{-1p \frac{1}{2} - (2) - [8] - 8}{-1p \frac{3}{2} - (4) - [6]}$$

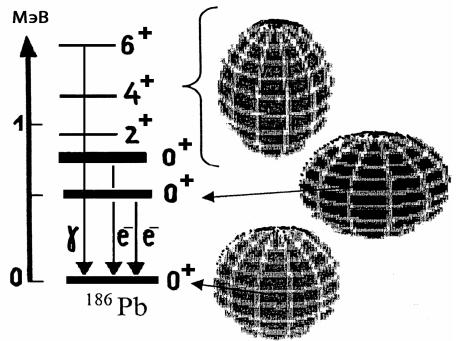
$$-1s - --- \frac{1s \frac{1}{2} - (2) - [2] - 2}{2}$$


Изотоп ⁷Li

A=7, Z=3, N=4

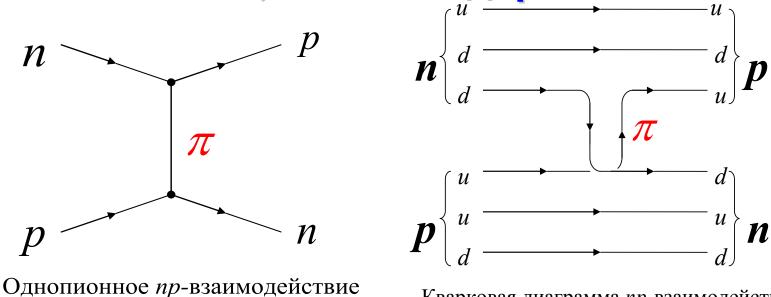
Принцип Паули

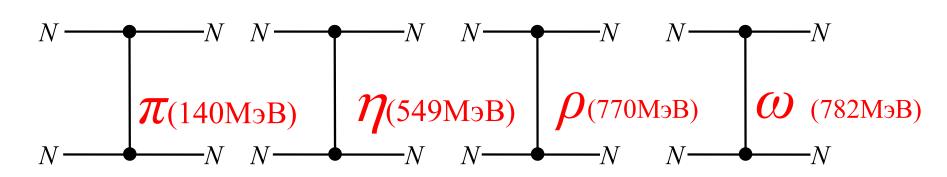

Одночастичные возбуждения атомных ядер



Одночастичные возбуждённые состояния ядер возникают при переходе одного или нескольких нуклонов на более высокие одночастичные орбиты.

Коллективные возбуждения ядер


Колебания сферических ядер



Вращение деформированных ядер

π -мезоны, кванты ядерного поля

Кварковая диаграмма пр-взаимодействия

мезон	π	η	ρ	ω
J ^p (I)	0-(1)	0-(0)	1-(1)	1-(0)

Радиоактивность

Радиоактивность – свойство атомных ядер самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов.

Радиоактивный распад

Основными видами радиоактивного распада являются:

- α -распад испускание ядрами α -частиц,
- **β**-распад испускание (или поглощение) лептонов,
- γ -распад испускание γ -квантов,
- спонтанное деление распад ядра на два осколка сравнимой массы.

К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от 12 С до 32 S. Во всех видах радиоактивности (кроме гамма-радиоактивности) изменяется состав ядра – число протонов Z, массовое число A или то идругое одновременно.

Радиоактивность

Радиоактивный распад может происходить только в том случае, если масса исходного ядра M_i больше суммы масс продуктов распада $\sum M_f$

$$M_i > \sum M_f$$

Разность

$$Q = \left(M_i - \sum M_f\right)c^2$$

выделяется в виде энергии продуктов распада.

Радиоактивный распад – статистический процесс

Постоянная распада λ

Постоянная распада λ характеризует вероятность распада атомного ядра в единицу времени.

Если в образце в момент времени t содержится N радиоактивных ядер, то количество dN ядер, распадающихся в интервал времени t — t+dt, определяется соотношением

$$dN = -\lambda Ndt$$

Знак «минус» означает, что общее число радиоактивных ядер уменьшается в результате распада.

Закон радиоактивного распада

$$N(t) = N_0 e^{-\lambda t}$$

 N_0 — количество ядер в радиоактивном источнике в начальный момент времени t=0,

N(t) — количество радиоактивных ядер, оставшихся в источнике в момент времени t,

 λ — постоянная распада.

Количество ядер радиоактивного источника, распавшихся за время t,

$$N_0 - N(t) = N_0 (1 - e^{-\lambda t})$$

Постоянная распада λ Среднее время жизни τ Период полураспада $T_{1/2}$

т — среднее время жизни ядра

$$\tau = \frac{\int_0^\infty t \left| \frac{dN}{dt} \right| dt}{\int_0^\infty \left| \frac{dN}{dt} \right| dt}$$

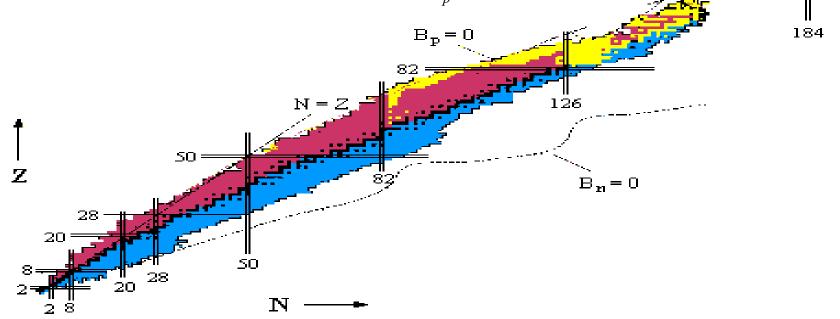
T_{1/2} - период полураспада – время, за которое число радиоактивных ядер уменьшается вдвое

$$\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}$$

Связь величин τ , $T_{1/2}$ и λ

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0,693}{\lambda} = \tau \cdot \ln 2$$

α-распад


 α -распад — распад атомных ядер, сопровождающийся испусканием α -частицы (ядра ${}^4{\rm He}$).

При α-распаде массовое число А уменьшается на 4 единицы, заряд ядра Z — на 2 единицы.

$$(A,Z) \rightarrow (A-4,Z-2)$$

α-распад происходит в результате сильного взаимодействия

Подавляющее большинство α -радиоактивных изотопов расположено в области тяжелых ядер Z>82. α -радиоактивные изотопы располагаются также вблизи границы протонной стабильности $B_p=0$.

Энергия α -распада \mathbf{Q}_{α}

Необходимым условием α -распада ядра (A,Z) является

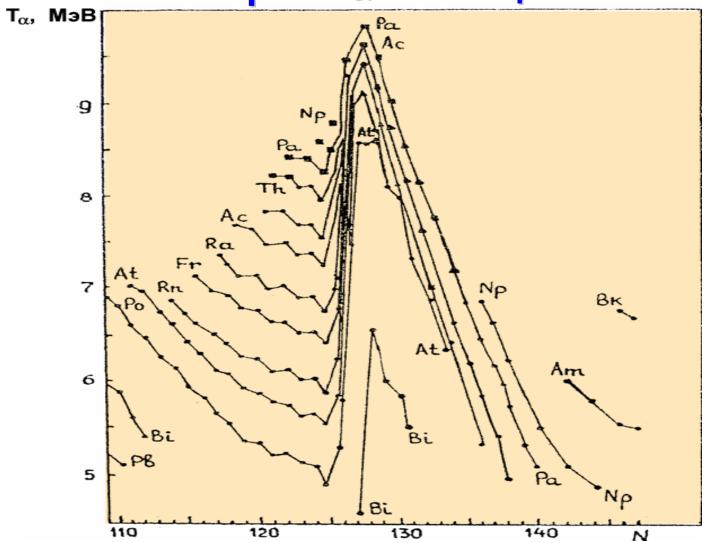
$$M(A,Z) > M(A-4,Z-2) + M_{\alpha}$$

M(A,Z) — масса исходного ядра,

M(A-4,Z-2) — масса конечного ядра,

 M_{α} — масса α -частицы.

В результате α -распада конечное ядро (A-4,Z-2) и α -частица приобретают суммарную кинетическую энергию Q_{α}


$$Q_{\alpha} = [M(A,Z) - M(A-4,Z-2) - M_{\alpha}]c^{2},$$

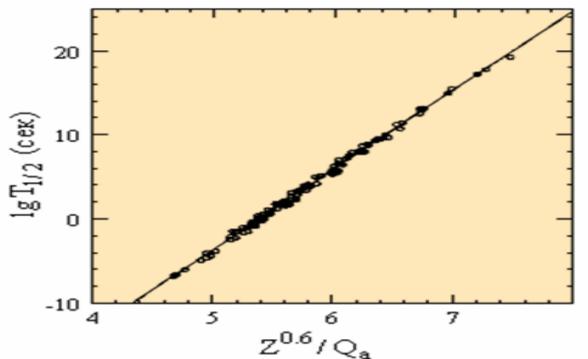
 Q_{α} — энергия α -распада.

Из законов сохранения энергии и импульса следует, что энергия lpha-частицы T_lpha

$$T_{\alpha} = Q_{\alpha} \frac{M(A-4,Z-2)}{M(A-4,Z-2)+M_{\alpha}}$$

Энергии α -частиц

В зависимости энергии α -частиц T_{α} от числа нейтронов N в исходном ядре ярко проявляются оболочечные эффекты. Пик при N=126 обусловлен образованием сильно связанного магического ядра.


α -распад

Важной особенностью α -распада является то, что при небольшом изменении энергии α -частиц периоды полураспада изменяются на много порядков.

Периоды полураспада известных α -радиоактивных изотопов варьируются в широких пределах

0,3 MKC (
212
Po)< $T_{1/2}$ < $(2-5)\cdot 10^{15}$ лет (186 Os, 144 Nd, 174 Hd)

Энергия α -частиц изменяется в пределах от 2 до 9 МэВ.

Зависимость периода полураспада чётно-чётных изотопов $74 \le Z \le 106$ от энергии α -распада.

Данные хорошо аппроксимируются зависимостью

$$\lg T_{1/2} = \frac{9,54Z^{0,6}}{Q_{\alpha}^{1/2} - 51,37}.$$

Физика процесса α-распада

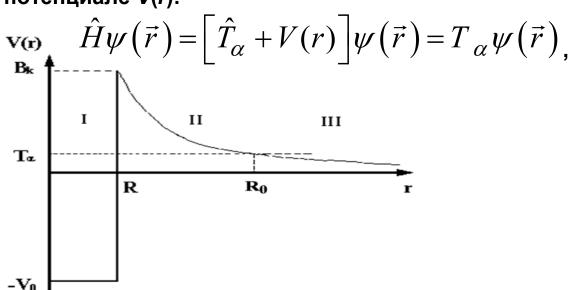
Основная особенность α -распада — сильная зависимость вероятности α -распада от энергии α -распада — обусловлена вероятностью прохождения α -частицы через потенциальный барьер.

Вероятность α -распада λ равна произведению вероятности обнаружить α -частицу на границе ядра f на вероятность её прохождения через потенциальный барьер D.

$$\lambda = f \cdot D$$

$$f = \frac{V}{2R} = \frac{V}{2r_0A^{1/3}} \approx \frac{c}{2r_0A^{1/3}} \left[\frac{2(T_\alpha + V_0)}{M_\alpha c^2} \right],$$

V — скорость α -частицы внутри ядра,

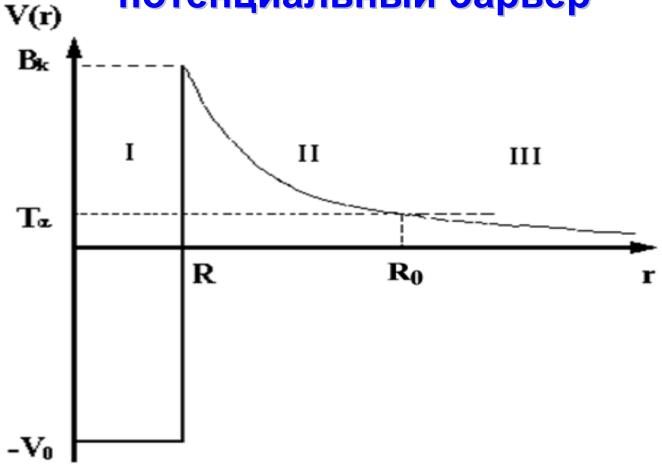

 T_{α} — кинетическая энергия lpha-частицы,

 $M_{\scriptscriptstyle lpha}$ — приведенная масса lpha-частицы,

 V_0 — ядерный потенциал.

Прохождение α -частицы через потенциальный барьер

Для расчета вероятности прохождения α -частицы сквозь потенциальный барьер, необходимо решить стационарное уравнение Шредингера для частицы массы μ в центральном потенциале V(r):


На рисунке показана зависимость потенциальной энергии взаимодействия между альфачастицей и конечным ядром от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу конечного ядра. Высота кулоновского барьера B_k определяется соотношением

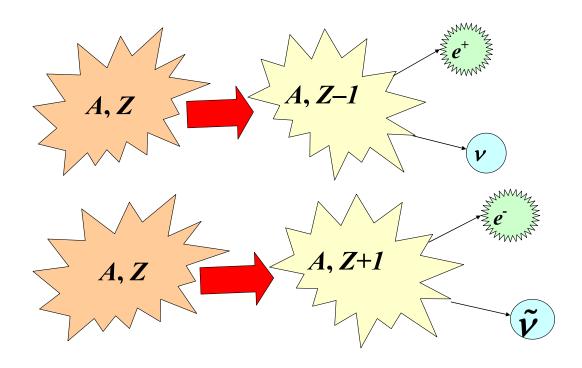
$$B_k = \frac{zZe^2}{R} \cong \frac{zZe^2}{r_0 A^{1/3}} \cong \frac{2Z}{A^{1/3}}$$

Z и z — заряды (в единицах заряда электрона е) конечного ядра и альфа-частицы соответственно.

Например, для 238 U $B_{\scriptscriptstyle k}\cong 30\,$ МэВ.

Прохождение α-частицы через потенциальный барьер

Вероятность прохождения lpha-частицы с энергией T_lpha через потенциальный барьер V(r).


$$P = \exp\left(-\frac{2}{\hbar}\int_{R}^{R_0} \sqrt{2\mu \left[V(r) - T_{\alpha}\right] dr}\right).$$

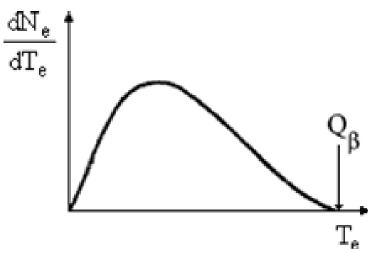
Исключительно резкая зависимость вероятности α-распада от энергии α-частицы приводит к тому, что распады на возбужденные состояния конечного ядра происходят с малой вероятностью, потому что при возбуждении конечного ядра уменьшается энергия α-частицы.

β-распад

β-распад — спонтанное превращение ядра (A,Z) в ядро-изобар (A,Z±1) в результате испускания лептонов (электрон и антинейтрино, позитрон и нейтрино), либо поглощения электрона с испусканием нейтрино (е-захват).

При β-распаде массовое число A не изменяется, заряд Z увеличивается или уменьшается на 1.

$$A \rightarrow A$$
, $Z \rightarrow Z + 1$, $Z \rightarrow Z - 1$


β-распад

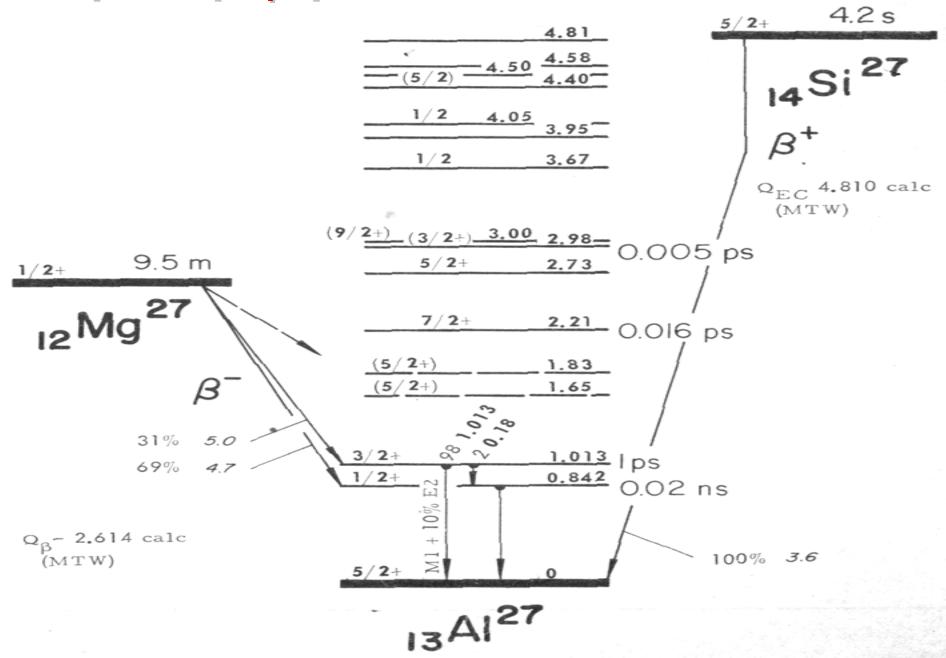
 β -распад — внутринуклонный процесс. В ядре распадается одиночный нуклон. Однако в процессе β -распада происходит перестройка ядра. Поэтому период полураспада и другие характеристики β -распада в значительной степени зависят от того, насколько сложна эта перестройка. Массовое число A при β -распаде не изменяется. Стабильные по отношению к β -распаду ядра при всех A располагаются вокруг значений $Z_{\text{равн}}$ с небольшим разбросом в обе стороны за счет индивидуальных особенностей ядер.

$$Z_{\text{равн}} = \frac{A}{0,015A^{2/3} + 2}$$

При $Z < Z_{\text{равн}}$ ядро нестабильно по отношению к электронному распаду, при $Z > Z_{\text{равн}}$ к позитронному распаду и е-захвату. β -распад часто происходит не только на основное но и на возбужденные состояния конечного ядра. При этом в отличие от α -распада энергия возбужденных состояний может быть сравнимой с полной энергией, выделяющейся при распаде на основное состояние.

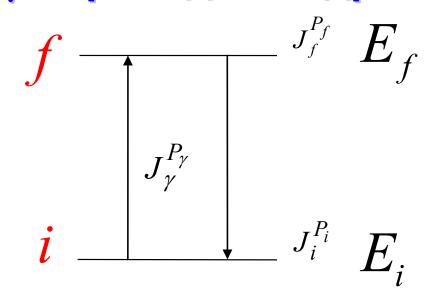
β**-распад.** Энергии и периоды полураспада

Энергии β-распада изменяются от 0.02 МэВ до ~20 МэВ.


$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e} + 0,02 \text{ M}3\text{B}$$
 $^{11}\text{Li} \rightarrow ^{11}\text{Be} + e^{-} + \overline{\nu}_{e} + 20,4 \text{ M}3\text{B}$

Периоды полураспада изменяются от 10⁻³ с до 10¹⁶ лет.

Большие времена жизни β -радиоактивных ядер объясняются тем, что β -распад происходит в результате слабого взаимодействия.


В результате бета-распада образуются три частицы: конечное ядро и пара лептонов. Энергия, сообщаемая ядру в силу его большой массы, мала, и ею можно пренебречь. Поэтому кинетическая энергия, выделяющаяся при β -распаде практически полностью уносится парой лептонов, причем распределение энергий между ними может быть произвольным. В результате энергетический спектр позитронов (электронов) и нейтрино (антинейтрино) должен быть непрерывным в интервале от 0 до \mathbf{Q}_{β} .

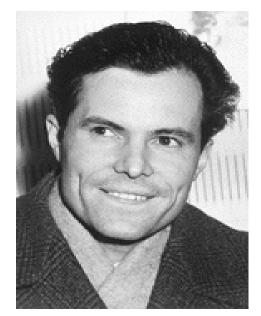
Пример. β-распады изотопов А=27

у-переходы в ядрах

Изменение состояний атомного ядра, сопровождающееся испусканием или поглощением γ -квантов, называют γ -переходами в атомных ядрах.

 γ -переходы происходят в результате электромагнитного взаимодействия.

Законы сохранения энергии E, момента количества движения J и четности P в электромагнитных переходах:

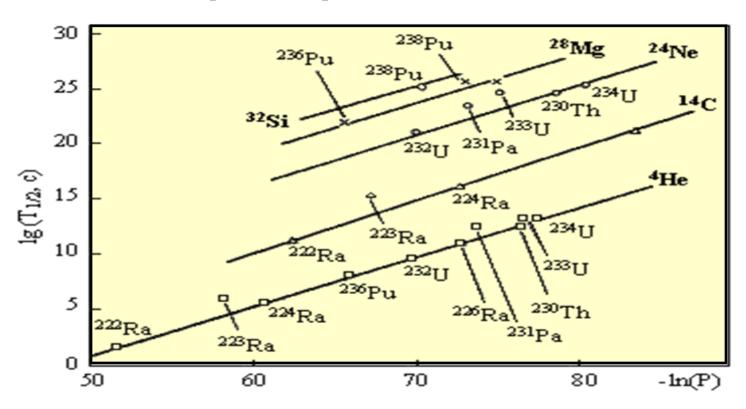

$$ec{J}_f = ec{J}_i + ec{J}_\gamma$$
 или $\left| J_i - J_f
ight| \leq J_\gamma \leq J_i + J_f$, $P_f = P_i \cdot P_\gamma$ или $P_\gamma = P_i \cdot P_f$, $E_f = E_i + E_\gamma + T_R$.

 $T_{\scriptscriptstyle R}$ - энергия ядра отдачи.

Резонансное поглощение у-квантов

1958 г.

Р. Мессбауэр открыл явление ядерного резонанса без отдачи (эффект Мессбауэра)

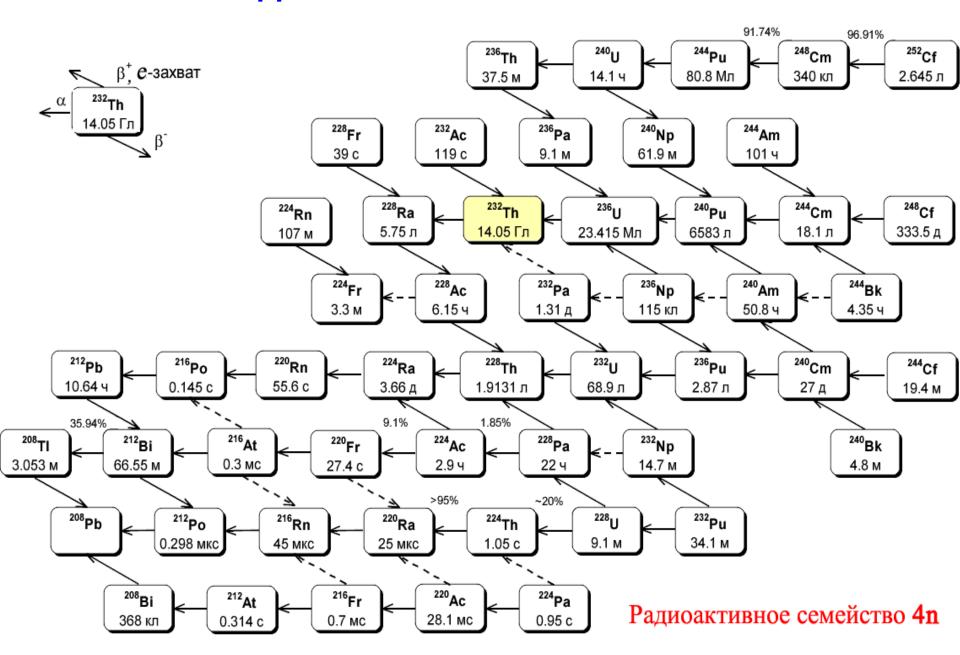

Р. Мёссбауэр1929-2011

Нобелевская премия по физике

1961 г. – Р. Мессбауэр

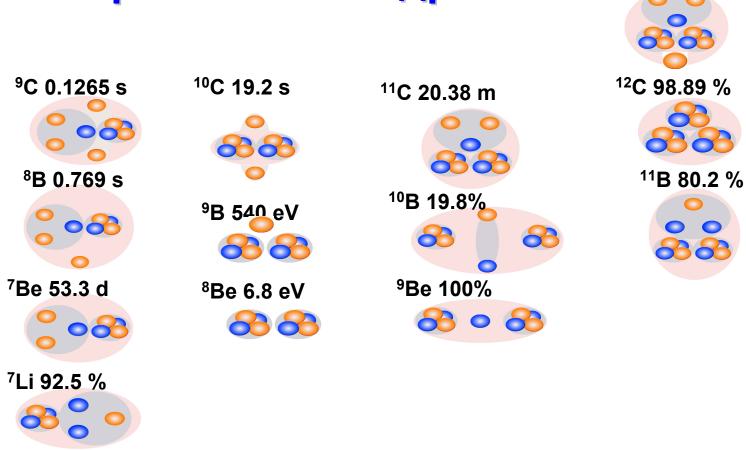
За исследования в области резонансного поглощения гамма-излучения и открытия в этой связи эффекта, носящего его имя.

Кластерная радиоактивность



Зависимость логарифма парциального периода кластерного распада от логарифма проницаемости кулоновского потенциального барьера.

$$\frac{\lambda(\alpha)}{\lambda(^{14}C)} \approx 10^{10}$$


$$^{223}Ra \to {}^{14}C + {}^{209}Pb + 31,38 \text{ M} \ni \text{B}$$

Радиоактивное семейство 4n

Кластеры в лёгких ядрах

⁶Li 7.5 %

¹²N 11.0 ms

Атомное ядро представляет собой связанную систему протонов и нейтронов. В результате взаимодействия между нуклонами в ядре образуются компактные структуры, состоящие из двух или большего числа частиц, которые могут возникать внутри атомного ядра. Кластерная структура атомных ядер проявляется в процессах α -распада, в различных ядерных реакциях.

Экзотические ядра

Антиядра

Гиперядра