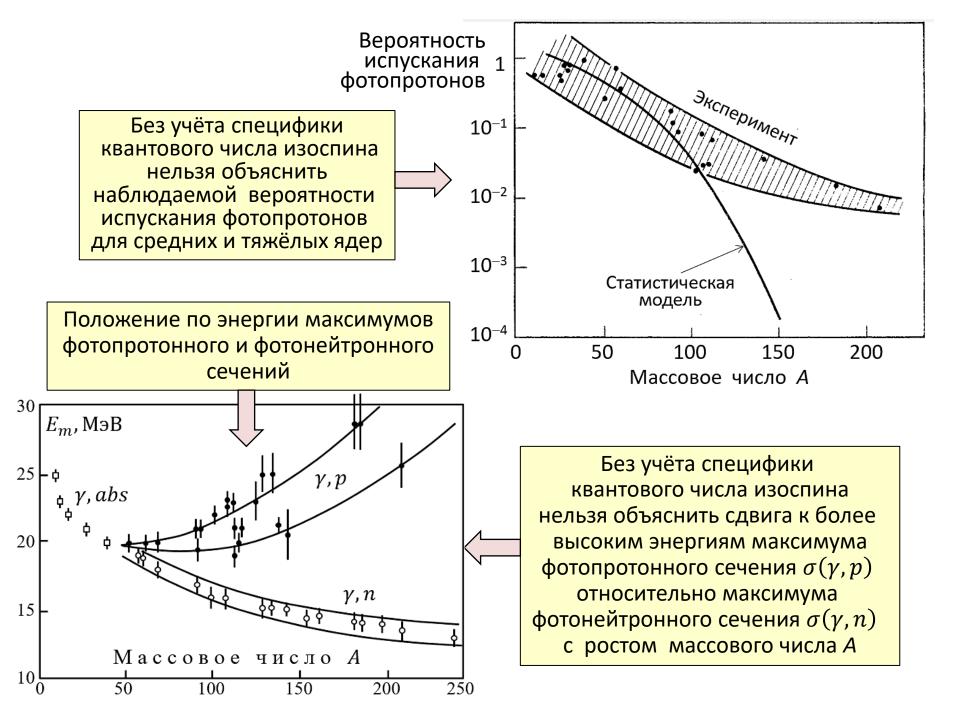
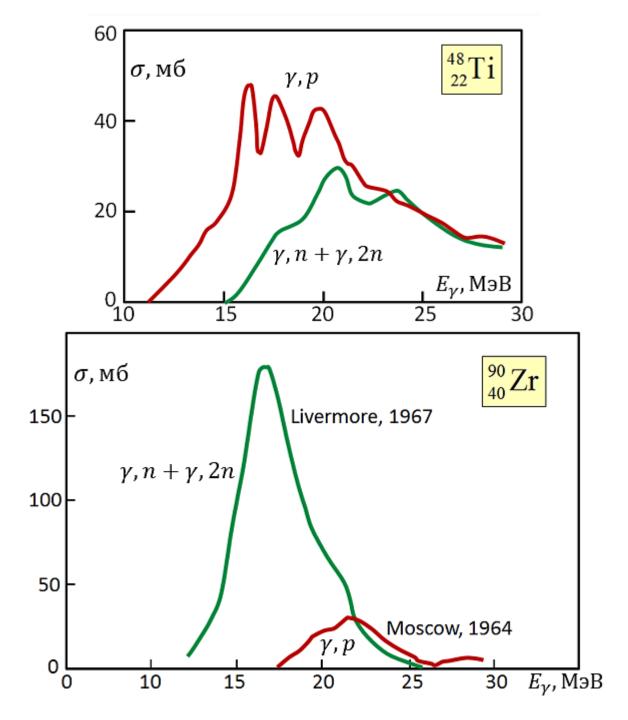
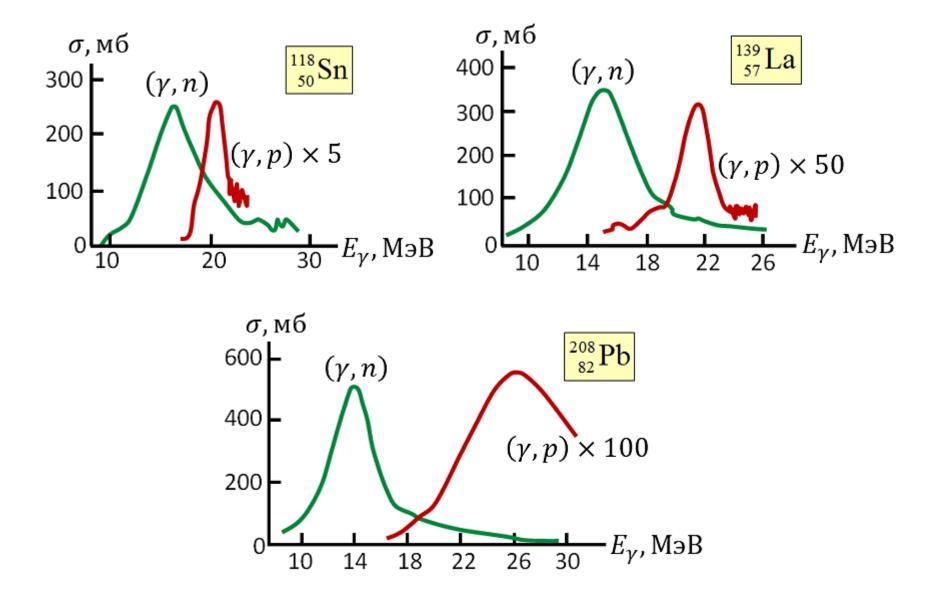
Изоспиновое расщепление Гигантского Дипольного Резонанса







Формализм изоспина

$$| \text{нуклон} \rangle \equiv | N \rangle = \left| t_N, (t_3)_N \right\rangle.$$
 $| n \rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle; | p \rangle = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle.$

$$\hat{t}_3|n\rangle = (t_3)_n|n\rangle = +\frac{1}{2}|n\rangle; \ \hat{t}_3|p\rangle = (t_3)_p|p\rangle = -\frac{1}{2}|p\rangle.$$

$$\hat{t}^2 |n\rangle = t(t+1)|n\rangle; \ \hat{t}^2 |p\rangle = t(t+1)|p\rangle; \ t(t+1) = 3/4.$$

Заряд нуклона: $q_N = e^{\left[\frac{1}{2} - (t_3)_N\right]}$.

Изоспин ядра и его проекция:

$$\vec{T} = \sum_{\alpha=1}^{A} \vec{t}_{\alpha}; T_{3} = \sum_{\alpha=1}^{A} (t_{3})_{\alpha} = N\left(+\frac{1}{2}\right) + Z\left(-\frac{1}{2}\right) = \frac{N-Z}{2}.$$

$$\left|\frac{N-Z}{2}\right| \le T \le \frac{A}{2}.$$

Изоспин основного состояния ядра: $T_0 \equiv |T_3| = \left| \frac{N-Z}{2} \right|$

$$T_0 \equiv |T_3| = \left| \frac{N - Z}{2} \right|$$

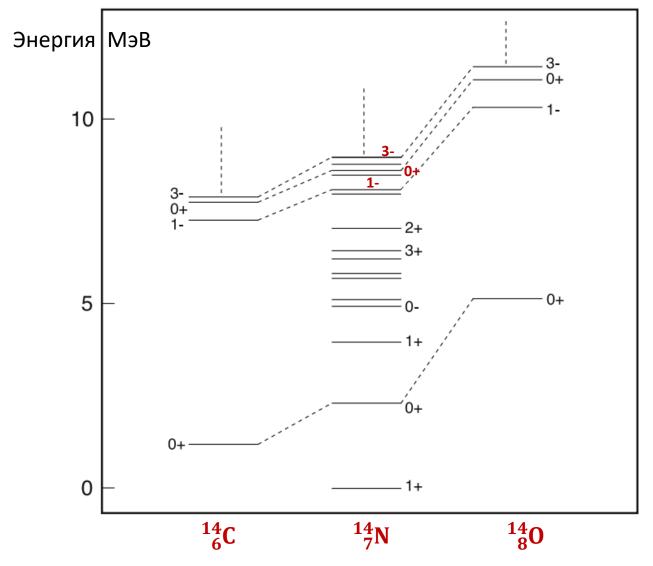
Доказательство в учебнике И.М. Капитонова «Введение в физику ядра и частиц», Приложение 9 \widehat{H} – гамильтониан ядра – с точностью до кулоновских сил инвариантен к поворотам в изопространстве, т. е. последовательной замене нейтрона на протон и наоборот. Этому отвечают приближенные коммутационные соотношения:

$$\left[\widehat{H},\widehat{T}^2\right] pprox 0$$
 и $\left[\widehat{H},\widehat{T}_3\right] pprox 0$.

Нуклон-нуклонное взаимодействие — скаляр в изопространтстве, т.е. изоскаляр, и простейший потенциал взаимодействия между двумя нуклонами α и β , отвечающий изоскаляру, может быть представлен в виде:

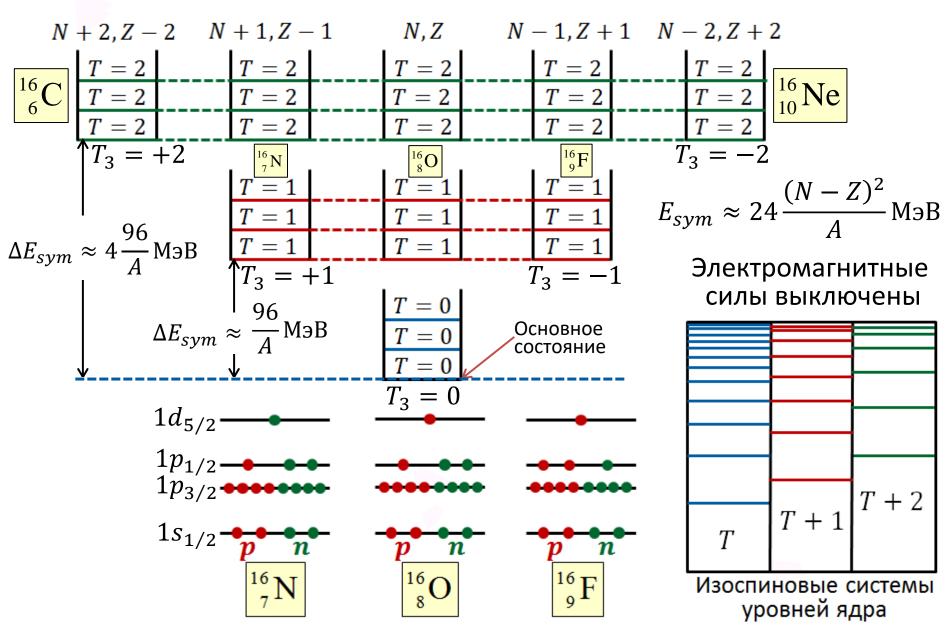
$$v_{\alpha\beta} \approx v_0 + v_1(\vec{t}_{\alpha} \cdot \vec{t}_{\beta}).$$

Ряд свойств ядер с данным A, но разными T_3 могут совпадать. Так, у них должны быть уровни одинаковой физической природы - Аналоговые уровни.



Низколежащие энергетические уровни трех наиболее устойчивых ядер-изобар с числом нуклонов A=14. Спин и чётность показаны для аналоговых уровней. Аналоговые уровни (состояния) трех ядер соединены пунктирными линиями. Нуль шкалы энергии привязан к основному состоянию ядра $^{14}_{7}$ N

Пример квинтета ядер с 16-ю нуклонами ${}^{16}_{6}$ C, ${}^{16}_{7}$ N, ${}^{16}_{8}$ O, ${}^{16}_{9}$ F, ${}^{16}_{10}$ Ne:

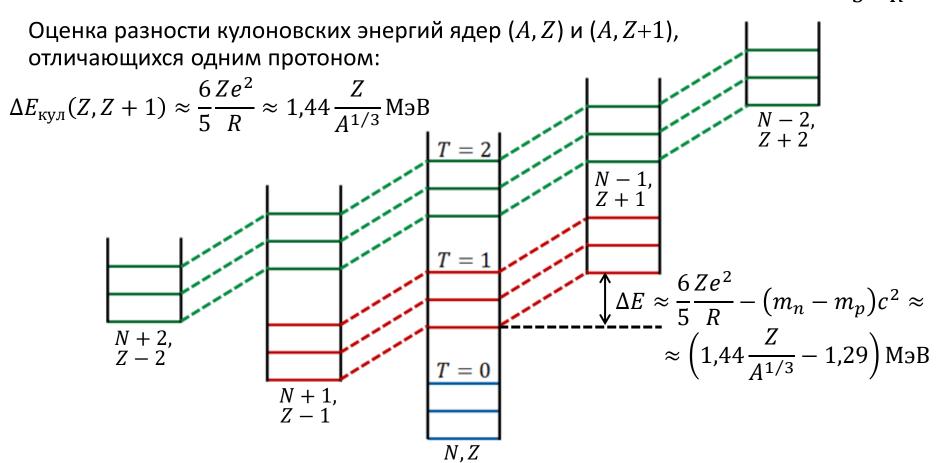


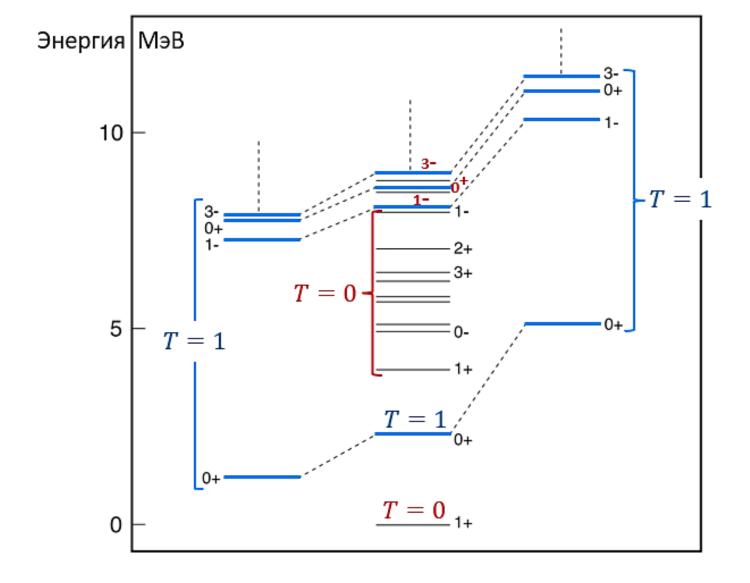
Оболочечная структура нижайшего состояния с T=1

Электромагнитные силы включены

Возникает сдвиг уровней ядер с разным числом протонов за счёт кулоновских сил. Кроме того, при замене нейтрона на протон (или наоборот) возникает сдвиг энергии ядра за счёт разных масс протона и нейтрона.

Кулоновская энергия однородного шара с Z элементарными зарядами: $E_{\text{кул}} = \frac{3}{5} \frac{(Ze)^2}{R}$

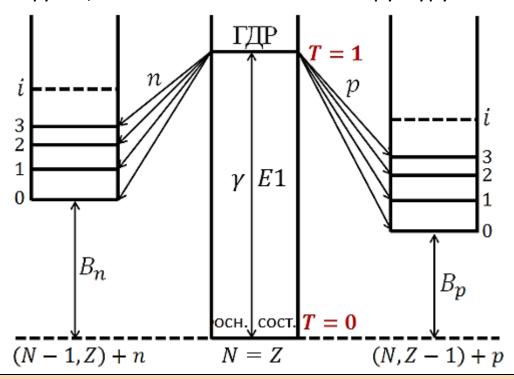




Низколежащие энергетические уровни трех наиболее устойчивых ядер-изобар с числом нуклонов A=14. Спин и чётность показаны для аналоговых уровней. Аналоговые уровни (состояния) трех ядер соединены пунктирными линиями. Нуль шкалы энергии привязан к основному состоянию ядра $^{14}_{7}N$

Чистота ядерных состояний по изоспину

Изоспин основного состояния ядра $T_0 = \left| \frac{N-Z}{2} \right|$. Низколежащие состояния (до нескольких МэВ) также обычно имеют изоспин T_0 , т. е. являются весьма чистыми по изоспину (примесь другого изоспина $< 10^{-4}$). По мере роста энергии к состояниям с изоспином T_0 все сильнее примешиваются состояния с изоспином $T_0 + 1$ и чистота состояний по изоспину ухудшается. Состояния гигантского резонанса лежат в той области энергий, где происходит смешивание состояний с T_0 и $T_0 + 1$ и волновые функции этих состояний имеют структуру $\Psi = \alpha_0 \Psi_{T_0} + \alpha_1 \Psi_{T_0+1} = \alpha_0 \Psi_0 + \alpha_1 \Psi_1$.



Самосопряжённые (N=Z) ядра, у которых состояния гигантского резонанса имеют изоспин 1, удобны для проверки чистоты изоспина этих состояний. Сравнение парциальных фотонуклонных сечений $\sigma(\gamma, p_i)$ и $\sigma(\gamma, n_i)$ с заселением одних и тех же (зеркальных) уровней конечных ядер позволяет найти отношение коэффициентов α_0 и α_1 . Для этого используют формулу

$$\frac{\sigma(\gamma, p_i)}{\sigma(\gamma, n_i)} = \frac{P_p}{P_n} \sqrt{\frac{E_p}{E_n}} \left| \frac{\alpha_0 + \alpha_1}{\alpha_0 - \alpha_1} \right|^2,$$

где P_p , P_n и E_p , E_n — проницаемости барьеров и энергии протонов и нейтронов.

Величина
$$\left| \frac{\alpha_0 + \alpha_1}{\alpha_0 - \alpha_1} \right|^2$$
 обосновывается в Приложении.

Вероятность $|\alpha_0/\alpha_1|^2$ примеси состояний с T=0 к состояниям с T=1, полученная из сечений реакций (γ,p_i) и (γ,n_i) для ядер с N=Z

Ядро	Номер <i>і</i> заселяемого состояния	E_{γ} , МэВ	$\sigma(\gamma, p_i)/\sigma(\gamma, n_i)$	$ \alpha_0/\alpha_1 ^2$,%
¹² C	0	22,5	2,0±0,3	<1,3
	1	23,0	2,5±0,7	<1,0
	1	27,0	1,3±0,5	<0,2
¹⁶ O	0	22,2	1,6±0,15	<1,0
	1, 2	22,8	$1,1\pm0,3$	<2,1
	3	23,0	$2,9\pm0,5$	4,4±1,7
	4	23,5	1,3±0,2	<1,3
²⁸ Si	0	19,9	2,0±0,4	<2,0
³² S	0	19,8	0,57±0,1	2,9±1,4
		21,8	$0,50\pm0,1$	3,6±1,9
⁴⁰ Ca	0	19,5	2,2±0,2	1,0±0,6
	1	19,0	2,2±0,8	<1,7

i=0 отвечает основному состоянию конечного ядра

Правила отбора по изоспину для E1-переходов получают анализируя оператор электрического дипольного момента системы с введенным в него квантовым числом изоспином.

Оператор электрического дипольного момента:

$$\vec{\mathcal{D}} = \sum_{\alpha=1}^{A} q_{\alpha} \vec{r}_{\alpha} = \sum_{\alpha}^{A} e \left[\frac{1}{2} - (t_{3})_{\alpha} \right] \cdot \vec{r}_{\alpha} = \underbrace{\frac{e}{2} \sum_{\alpha=1}^{A} \vec{r}_{\alpha}}_{\mathcal{D}_{0}} - \underbrace{e \sum_{\alpha=1}^{A} (t_{3})_{\alpha} \vec{r}_{\alpha}}_{\mathcal{D}_{1}} = \vec{\mathcal{D}}_{0} + \vec{\mathcal{D}}_{1}$$

В системе центра инерции координата центра инерции:
$$\vec{R} = \frac{1}{A} \sum_{\alpha=1}^{A} \vec{r}_{\alpha} = 0$$
 и $\vec{\mathcal{D}}_{0} = 0$, т. е.

$$\overrightarrow{\mathcal{D}}$$
(сци) $\equiv \overrightarrow{\mathcal{D}}_1 = -e \sum_{\alpha=1}^A (t_3)_{\alpha} \vec{r}_{\alpha}$

или
$$\mathcal{D}_Z(\text{сци}) = \left(-e\sum_{\alpha=1}^A (t_3)_{\alpha} z_{\alpha}\right)$$

В системе центра инерции это оператор электрического дипольного момента ядра при направлении вектора поляризации эл.-магн. волны ВДОЛЬ ОСИ Z

Компоненты векторов в изопространстве и в обычном пространстве входят в это соотношение симметрично!

Поэтому правила отбора по изоспину для E1-переходов получаем по аналогии с правилами отбора по угловому моменту для этих же переходов:

$$J_f = J_i, J_i \pm 1$$

$$(J_z)_f = (J_z)_i$$

$$0 \neq 0$$

$$T_f = T_i, T_i \pm 1$$

$$(T_3)_f = (T_3)_i$$

$$0 \neq 0$$

То же следует из теоремы Вигнера-Эккарта.

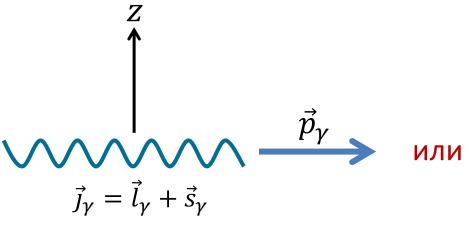
E1-фотон эквивалентен частице с изоспином t=1 и $t_3=0$.

$$\vec{T}_f = \vec{T}_i + \vec{t}$$

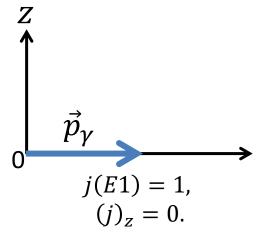
Если вектор поляризации электромагнитной волны (фотона) направлен вдоль оси z, то оператор E1-излучения (фотона) имеет вид

$$\mathcal{D} = \mathcal{D}_z = \sum_{\alpha} e_{\alpha} z_{\alpha}$$

При этом вектор импульса E1-фотона следующим образом ориентирован относительно оси z



Для E1-фотона $l_{\gamma}=0$ и $j_{\gamma}(E1)\equiv s_{\gamma}=1$. Полный момент E1-фотона целиком создаётся его спином и ориентирован так же, как и спин, т.е. по линии движения фотона. Итак, E1-фотон при выбранной ориентации оси z отвечает частице с j=1 и $j_z=0$. Поглощение системой (ядром) такого фотона не меняет J_z этой системы, т. е. $(J_z)_f=(J_z)_i$



Аналогично:
$$t_{\gamma}(E1) = 1,$$

$$\left(t_{\gamma}\right)_{3} = 0$$

Неприводимым тензорным оператором (неприводимым тензором) называется совокупность 2s+1 величин θ_{sp} , где

$$p = -s, -s + 1, ..., s - 1, s,$$

которая при повороте системы координат преобразуется как сферические функции Y_{lm} .

Для неприводимых тензоров справедлива теорема Вигнера-Эккарта, которая применительно к Y_{lm} имеет вид:

$$\langle J_f M_f | Y_{lm} | J_i M_i \rangle = (J_f M_f lm | J_i M_i) \langle J_f || Y_l || J_i \rangle,$$

где $\langle J_f M_f | Y_{lm} | J_i M_i \rangle$ — матричный элемент перехода под действием Y_{lm} , $(J_f M_f lm \big| J_i M_i)$ — коэффициент Клебша-Гордана, а $\langle J_f \| Y_l \| J_i \rangle$ — приведённый матричный элемент, не зависящий от проекций M и m.

Из этой теоремы, в частности, следуют правила отбора для переходов, диктуемых неприводимыми тензорными операторами, к которым относятся и операторы электромагнитных переходов, а именно:

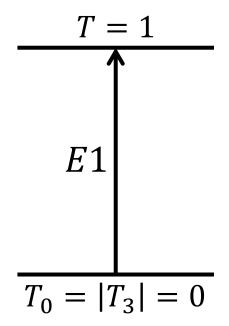
коэффициенты Клебша-Гордана $(....|...) \neq 0$ лишь при следующих условиях:

$$M_f = M_i + m$$
 u $|J_i - l| \le J_f \le J_i + l$,

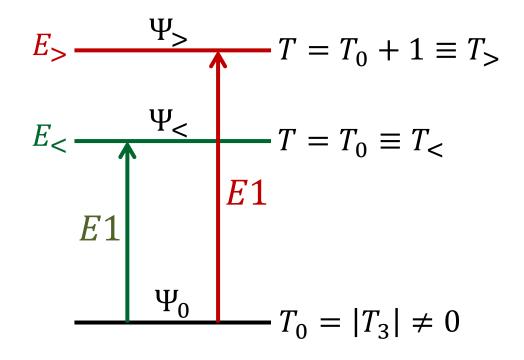
которые и являются правилами отбора.

Изоспиновые ветви E1-переходов

Самосопряжённые ядра (N=Z)



Несамосопряжённые ядра ($N \neq Z$)



Центры тяжести компонент гигантского резонанса с $T_{<}$ и $T_{>}$ в несамосопряженных ядрах могут лежать при разных энергиях. Для оценки величины их расщепления по энергии и отношения вероятностей возбуждения будем использовать концепцию формирования коллективного дипольного состояния.

Оценка вероятности возбуждения состояний гигантского резонанса с разным изоспином в несамосопряженных $(N \neq Z)$ ядрах

Для упрощения рассматриваем одно коллективное дипольное состояние Ψ_{dip} , в котором смешаны обе изоспиновые компоненты:

$$\Psi_{dip} = c_{<}\Psi_{<} + c_{>}\Psi_{>}; \ c_{<}^{2} + c_{>}^{2} = 1.$$

$$\langle \Psi_{<} | \Psi_{dip} \rangle = c_{<} \langle \Psi_{<} | \Psi_{<} \rangle + c_{>} \langle \Psi_{<} | \Psi_{>} \rangle.$$

$$\langle \Psi_{>} | \Psi_{dip} \rangle = c_{<} \langle \Psi_{>} | \Psi_{<} \rangle + c_{>} \langle \Psi_{>} | \Psi_{>} \rangle.$$
 Итак: $c_{<} = \langle \Psi_{<} | \Psi_{dip} \rangle; \ c_{>} = \langle \Psi_{>} | \Psi_{dip} \rangle$

По прежнему полагаем поляризацию э.-м. волны вдоль оси z.

Тогда
$$\Psi_{dip}=\mathcal{D}_z\big|\Psi_0\big>$$
, где $\big|\Psi_0\big>- {
m BoлнoBar} \ {
m bonhobs}$ основного состояния ядра

Итак, имеем:
$$c_{<} = \langle \Psi_{<} | \Psi_{dip} \rangle = \langle \Psi_{<} | \mathcal{D}_{z} | \Psi_{0} \rangle.$$
 $c_{>} = \langle \Psi_{>} | \Psi_{dip} \rangle = \langle \Psi_{>} | \mathcal{D}_{z} | \Psi_{0} \rangle.$

По теореме Вигнера-Эккарта:

$$\langle \Psi_{<}|\mathcal{D}_{z}|\Psi_{0}\rangle = \left(T_{f}(T_{0})_{f}tt_{3}\middle|T_{i}(T_{0})_{i}\right)\langle\Psi_{<}||\mathcal{D}_{z}||\Psi_{0}\rangle =$$

$$= \left(T_{<}T_{<}t_{\gamma}(t_{3})_{\gamma}\middle|T_{<}T_{<}\right)\langle\Psi_{<}||\mathcal{D}_{z}||\Psi_{0}\rangle = \left(T_{0}T_{0}10|T_{0}T_{0}\right)\langle\Psi_{<}||\mathcal{D}_{z}||\Psi_{0}\rangle =$$

$$= \left(T_{0}T_{0}T_{0}T_{0}\right)\langle\Psi_{<}||\mathcal{D}_{z}||\Psi_{0}\rangle$$

$$\langle\Psi_{>}|\mathcal{D}_{z}|\Psi_{0}\rangle = \left(T_{>}T_{<}t_{\gamma}(t_{3})_{\gamma}\middle|T_{<}T_{<}\right)\langle\Psi_{>}||\mathcal{D}_{z}||\Psi_{0}\rangle =$$

$$= \left(T_{0}+1,T_{0}10|T_{0}T_{0}\rangle\langle\Psi_{>}||\mathcal{D}_{z}||\Psi_{0}\rangle =$$

$$= \left(T_{0}+1,T_{0}10|T_{0}T_{0}\rangle\langle\Psi_{>}||\mathcal{D}_{z}||\Psi_{0}\rangle =$$
Коэффициент Клебша-Гордана

Используем (см Лекцию 2) выражение

$$\begin{split} \int_0^\infty \sigma_{E1} dE &= \frac{4\pi^2}{c} \sum_f^{\text{BCe}} \omega_{fi} |\langle f | \mathcal{D}_z | i \rangle|^2 \text{, где } \omega_{fi} = \frac{E_f - E_i}{\hbar}. \text{ Тогда} \\ \int_0^\infty \sigma_> dE &= \frac{4\pi^2}{c} \omega_> |\langle \Psi_> | \mathcal{D}_z | \Psi_0 \rangle|^2 \text{; } \int_0^\infty \sigma_< dE = \frac{4\pi^2}{c} \omega_< |\langle \Psi_< | \mathcal{D}_z | \Psi_0 \rangle|^2 \text{,} \\ &\qquad \qquad \text{а значит} \\ \frac{\int \frac{\sigma_>}{E_>} dE}{\int \frac{\sigma_<}{E_<} dE} &= \frac{c_>^2}{c_<^2} = \frac{1}{T_0} \left| \frac{\langle \Psi_> || \mathcal{D}_z || \Psi_0 \rangle}{\langle \Psi_< || \mathcal{D}_z || \Psi_0 \rangle} \right|^2 = \frac{1}{T_0} b(T_0), \text{где } b(T_0) = \left| \frac{\langle \Psi_> || \mathcal{D}_z || \Psi_0 \rangle}{\langle \Psi_< || \mathcal{D}_z || \Psi_0 \rangle} \right|^2 \end{split}$$

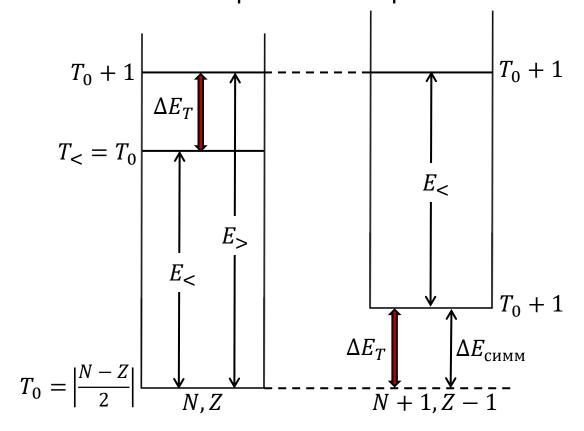
Для $b(T_3)$ в работе В. Goulard, S. Fallieros. Can. J. Phys. v. 45, p. 3221 (1967)

было получено:
$$b(T_3) = \frac{1 - \frac{3}{2}T_0A^{-2/3}}{1 + \frac{3}{2}T_0A^{-2/3}}.$$

При $|\langle \Psi_>||\mathcal{D}_Z||\Psi_0 \rangle|^2 \approx |\langle \Psi_<||\mathcal{D}_Z||\Psi_0 \rangle|^2$ и учитывая, что в нашем схематическом рассмотрении есть единственное дипольное состояние, т.е. $\omega_>=\omega_<$ (или $E_>=E_<$) , получаем

$$\frac{\int \sigma_> dE}{\int \sigma_< dE} pprox \frac{1}{T_0}$$
, где $T_0 = \left| \frac{N-Z}{2} \right|$.

Полуколичественная оценка относительного расщепления по энергии состояний гигантского резонанса с различным изоспином



Слева для ядра с $N \neq Z$ показана оценка величины ΔE_T искомого изоспинового расщепления гигантского резонанса, равная $E_> - E_<$. Состояние с $T_> = T_0 + 1$ в ядре (N,Z) имеет изобар-аналог в ядре (N+1,Z-1), который в этом ядре является уже $T_<$ -состоянием (правая часть рисунка), и энергия возбуждения этого изобар-аналога должна быть близкой к энергии $T_<$ -состояния в ядре (N,Z).

Если пренебречь кулоновскими силами и разницей в массах протона и нейтрона, то из формулы Вайцзеккера для энергии связи ядра следует, что энергии состояний ядра (N+1,Z-1) будут сдвинуты вверх относительно состояний ядра (N,Z) за счёт возрастания энергии симметрии $E_{\text{симм}} \approx 24 \frac{(N-Z)^2}{A} \, \text{МэВ}.$ При переходе от ядра (N,Z) к ядру (N+1,Z-1) это увеличение энергии симметрии составит

$$\Delta E_{\text{CMMM}} = 24 \cdot 4 \frac{[(N-Z)+1]}{A} \text{M} \ni \text{B} \approx \frac{100}{A} (2T_0+1) \text{M} \ni \text{B}.$$

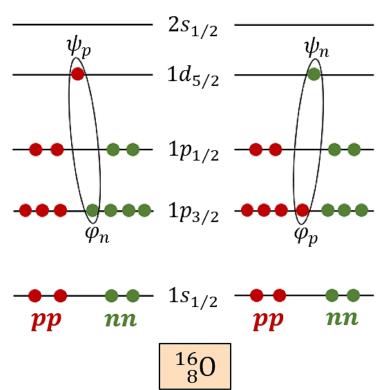
И эту же величину будем пока рассматривать как предварительную оценку масштаба изоспинового расщепления гигантского резонанса ΔE_T , т.е.

$$\Delta E_T \approx \frac{100}{A} (2T_0 + 1) \text{M} \cdot \text{B}.$$

Приложение

При возбуждении гигантского дипольного резонанса E1-фотон поглощается нейтрон-протонной парой какой-либо подоболочки и один из нуклонов этой пары, находясь вначале на этой подоболочке в связанном состоянии, характеризуемом волновой функцией φ_n или φ_p , переходит на более высокую свободную подоболочку, оказываясь в несвязанном состоянии, характеризуемом волновой функцией ψ_n или ψ_p . И этот несвязанный нуклон покидает ядро. Подоболочки, затронутые в таком переходе, определяются правилами отбора для E1-переходов. На следующем слайде приведен пример E1-перехода $1p_{3/2} \to 1d_{5/2}$ в самосопряженном (N=Z) ядре $^{16}_{8}{\rm O}$. В соответствии с правилами отбора по изоспину нуклонные E1-переходы такого типа в самосопряженном ядре отвечают возбуждению с изоспином T=1. Причем, этот изоспин целиком формируется протон-нейтронной парой, в состав которой входит возбужденный нуклон одного типа и нуклон другого типа на той подоболочке, которую покинул возбужденный нуклон. В тех примерах, которые приведены на рисунке, это пары протон $1d_{5/2}$ — нейтрон $1p_{3/2}$ и нейтрон $1d_{5/2}$ — протон $1p_{3/2}$. Напомним, что E1-фотон эквивалентен частице с изоспином 1 и проекцией изоспина О. Именно этими характеристиками и наделяется нейтрон-протонная пара, поглотившая E1-фотон. Изоспин, связанный с остальной частью ядра нулевой, так как эту часть ядра образуют равные количества протонов и нейтронов с противоположными проекциями изоспина.

Возникает вопрос: Каково соотношение вероятностей (эффективных сечений) вылета из ядра возбужденного и несвязанного протона и нейтрона? Это соотношение определяется тремя факторами: энергиями отделения нейтрона и протона, т.е. их порогами (фактически, их кинетическими энергиями E_n и E_p), проницаемостями P_n и P_p для нейтронов и протонов кулоновского и центробежного барьеров и, наконец, – степенью смешивания состояний гигантского резонанса, имеющих в самосопряженном ядре изоспин 1, с более плотным фоном в таком ядре состояний с изоспином, равным изоспину основного состояния, т.е. с изоспином 0. Все упомянутые факторы учтены соотношением, приведенным на слайде 11.



То, как фигурируют первые два фактора в этом соотношении, по-видимому, не требует особых комментариев. Задача данного Приложения объяснить появление

в этом соотношении множителя
$$\left| \frac{\alpha_0 + \alpha_1}{\alpha_0 - \alpha_1} \right|^2$$
.

При чтении дальнейшего текста полезно вспомнить свойства симметрии двухнуклонных состояний. Рекомендуемый материал изложен в Приложении 15 на стр. 433 книги И.М. Капитонова «Введение в физику ядра и частиц», 5-е или 6-е издание.

Из протон-нейтронных пар,

реализующих ядерное возбуждение в самосопряженном ядре, можно сформировать как состояния с изоспином 1, так и состояния с изоспином 0, равным изоспину основного состояния такого ядра.

Состояния гигантского дипольного резонанса относятся к состояниям первого типа и симметричны по изоспину, т.е. симметричны к перестановке протона и нейтрона в протон-нейтронной паре. Симметричная волновая функция такой пары имеет вид

$$\Psi_{T=1} = \varphi_n \psi_p + \varphi_p \psi_n.$$

Состояния с изоспином 0 антисимметричны к перестановке протона и нейтрона, т.е. для них

$$\Psi_{T=0} = \varphi_n \psi_p - \varphi_p \psi_n.$$

Эти состояния, имеющие плотность более высокую, чем состояния гигантского резонанса смешиваются с последними

и реальное ядерное возбуждение будет даваться функцией

$$\Psi = \alpha_0 \Psi_{T=0} + \alpha_1 \Psi_{T=1} = (\alpha_0 + \alpha_1) \varphi_n \psi_p + (\alpha_0 - \alpha_1) \varphi_p \psi_n.$$

Вероятность протонного или нейтронного распада пропорциональна квадрату коэффициентов при функциях их несвязанных состояний ψ_p и ψ_n ,

т.е. соответственно
$$(\alpha_0+\alpha_1)^2$$
 или $(\alpha_0-\alpha_1)^2$,

что и приводит к множителю
$$\left| \frac{\alpha_0 + \alpha_1}{\alpha_0 - \alpha_1} \right|^2$$
.