Радиоактивный стронций *

И. Я. Василенко

доктор медицинских наук, Государственный научный центр — Институт биофизики

О. И. Василенко[†]

доктор физико-математических наук, физический факультет МГУ им. М. В. Ломоносова

Стронций (Sr) — элемент 2 группы периодической системы. Природный стронций относится к микроэлементам и состоит из смеси четырёх стабильных изотопов 84 Sr (0.56 %), 86 Sr (9.96 %), 87 Sr (7.02 %), 88 Sr (82.0 %). По физико-химическим свойствам он является аналогом кальция и в геохимических процессах его спутником. Кларковое содержание в земной коре оценено как $340 \cdot 10^{-4} \%$. Стронций содержится во всех растительных и животных организмах в количестве $10^{-2} \div 10^{-3} \%$ сухой массы. В организме взрослого человека содержится около 0.3 г стронция. Почти весь он находится в скелете. На другие органы приходится лишь 3.3 мг. Суточное поступление с пищей и водой составляет около 1.9 мг. Выводится из организма с фекалиями $-1.5~{
m M}$ г и мочой $-0.34~{
m M}$ г. Физиологическое значение стронция остаётся неясным. Однако, избыточное содержание его в организме становится реальной угрозой развития уровской болезни (болезни Кашина-Бека), проявляющейся в заболевании суставов, повышенной ломкости и уродством костей. Рахитогенное действие стронция связывают с блокированием действия витамина D и избыточным отложением в костях фосфора. Считают, что причиной болезни является также избыточное содержание бария и недостаток кальция в пище. В эндемичных по избыточному содержанию стронция в почве и воде регионах (Восточная Сибирь, Северный Китай, Северная Корея) уровская патология наблюдается не только у людей, но в основном среди животных.

^{*}И. Я. Василенко, О. И. Василенко. "Стронций радиоактивный." // Энергия: экономика, техника, экология. 2002, N 4, C. 26-32. †E-mail address: vasilenko@depni.sinp.msu.ru

Из радиоактивных изотопов стронция известны нуклиды с массовыми числами $77 \div 83$, 85, $89 \div 99$. Ядерно-физические характеристики основных радиоизотопов приведены в таблице 1 на с. 12. Наибольший практический интерес представляют ⁸⁹Sr ($T_{1/2} = 50.5$ сут.) и ⁹⁰Sr ($T_{1/2} = 29.1$ лет), характеризующиеся большим выходом в реакциях деления урана и плутония (таблица 2 на с. 14). При делении урана и плутония ⁸⁹Sr и ⁹⁰Sr образуются в цепочках превращений:

$$^{89}\mathrm{Kr} \xrightarrow{\beta^{-}} ^{89}\mathrm{Rb} \xrightarrow{\beta^{-}} ^{89}\mathrm{Sr} \xrightarrow{\beta^{-}} ^{89}\mathrm{Y} \text{ (cta6.)},$$

$$^{90}\mathrm{Kr} \xrightarrow{\beta^{-}} ^{90}\mathrm{Rb} \xrightarrow{\beta^{-}} ^{90}\mathrm{Sr} \xrightarrow{\beta^{-}} ^{90}\mathrm{Y} \xrightarrow{\beta^{-}} ^{90}\mathrm{Zr} \text{ (cta6.)}.$$

Содержание их в продуктах деления ($\Pi H \Pi \Pi$) в зависимости от возраста $\Pi H \Pi \Pi \Pi \Pi$ приведено в таблице 3 на с. 15.

Источники радиоактивного стронция

Основным источником загрязнения внешней среды радиоактивным стронцием были испытания ядерного оружия и аварии на предприятиях топливно-ядерного цикла. Атмосфера — первичный резервуар ⁸⁹Sr и ⁹⁰Sr, откуда радионуклиды поступают на сушу и в гидросферу. Осаждение определяется гравитацией, адсорбцией на нейтральной пыли, постоянно присутствующей в атмосфере, и удалением атмосферными осадками (дождём, снегом). Время пребывания радиоактивных аэрозолей в атмосфере составляет 30-40 суток, в стратосфере — несколько лет. Вследствие различных периодов полураспада соотношение ⁸⁹Sr: ⁹⁰Sr в выпадениях постоянно меняется. В начальный период после взрыва в выпадениях преобладает ⁸⁹Sr, а затем ⁹⁰Sr, поскольку отношение активности $^{89}{\rm Sr}$: $^{90}{\rm Sr}$ в начальный период равно 150. В начальный период $^{89}{\rm Sr}$ является одним из компонентов загрязнения внешней среды в зонах ближних выпадений радионуклидов. Суммарное количество ⁸⁹Sr, поступившего в атмосферу, оценивается в 90 ЭБк, а ⁹⁰Sr в 600 ПБк. В эти величины не входит стронций локальных выпадений. Наблюдалась отчётливо выраженная зональность выпадений, зависящих от особенностей атмосферных течений. За период 1961–1969 гг. в умеренных широтах Северного полушария плотность выпадения $^{89}\mathrm{Sr}$ составила $1.3\cdot10^4~\mathrm{Bk/m^2}$, а $^{90}\mathrm{Sr}$ за период 1951–1980 гг. примерно $2.1 \cdot 10^4$ Бк/м².

Источником загрязнения внешней среды, как было отмечено, были и остаются предприятия атомной энергетики. В условиях нормальной эксплуатации АЭС выбросы радионуклидов незначительны. В основном они

обусловлены газообразными радионуклидами (РБГ, 14С, тритием и йодом). В условиях аварий, особенно крупных, выбросы радионуклидов, в том числе радиоизотопов стронция, могут быть значительными. Примером являются известные аварии на промышленном реакторе в Уиндскейле (1957 г.) и ЧАЭС (1986 г.). В Уиндскейле произошёл пожар и выброс и составил соответственно $29.6 \cdot 10^{11}$ и $33.3 \cdot 10^{10}$ Бк. На ЧАЭС в разрушенном реакторе по оценкам могло накопиться $22.6 \cdot 10^{16}$ Бк и $233.1 \cdot 10^{16}$ Бк. Выброс мог составить 4 и 3 % накопленной в реакторе активности. В 1957 г. в результате нарушения режима хранения РАО в ПО "Маяк" произошёл взрыв ёмкости, где хранились радионуклиды в количестве $74 \cdot 10^{16}$ Бк. При взрыве $74 \cdot 10^{15}$ Бк (10 %) активности в виде жидкой пульпы было поднято взрывом на высоту до 1 км. В выброшенной активности на долю 89 Sr и 90 Sr пришлось 2.2 и 2.5 %, которые обусловили длительное загрязнение больших территорий ряда областей Южного Урала. Образовался Восточно-Уральский радиоактивный след (ВУРС). В начальный период работы ПО "Маяк" в результате сброса 10^{17} Бк РАО в реку Теча произошло загрязнение её поймы. В сбросах содержались радиоизотопы цезия, стронция и редкоземельных элементов.

2 Процессы миграции

Оценивая опасность загрязнения внешней среды радиоактивным стронцием, следует кратко остановиться на его миграции в природных средах. Выпавший на поверхность Земли радиоактивный стронций включается под влиянием природных факторов в процессы миграции. После атмосферы почва становится его важнейшим депо. Радионуклиды мигрируют в горизонтальном и вертикальном направлениях. На их миграцию существенное влияние оказывают их физико-химические свойства, климатические условия, рельеф местности, вид почвы, гидрологический режим, характер растительности, агрохимические особенности ведения сельского хозяйства и др. 90Sr В глобальных выпадениях 90Sr практически водорастворим и в почве находится в подвижной форме, что имеет принципиальное значение в процессах его миграции.

Кратко остановимся лишь на некоторых вопросах миграции радиостронция в биоценозах, поскольку пища растительного и животного происхождения является основным источником его поступления населению. В процессе миграции радионуклидов по пищевым цепочкам: растения \rightarrow человек, растения \rightarrow животные \rightarrow человек, вода \rightarrow гидробионты \rightarrow человек обычно происходит их дискриминация, т.е. изменение содержания в звеньях.

Почва — растения — начальное звено большинства пищевых цепочек экологического цикла переноса радиостронция из внешней среды человеку. В растения радионуклиды могут поступать в результате непосредственного загрязнения наземных их частей в момент выпадения, пылеобразования и поглощения из почвы через корневую систему. Задержка радиоаэрозолей определяется их дисперсностью и видовыми особенностями растений. Коэффициент задержки глобального радиостронция может достигать 25 %. Радиоактивные частицы с растений смываются дождём, сдуваются ветром и т.д. Время их удержания зависит от размера и вида растений. Для умеренного пояса оно составляет 1—5 недель, в среднем 2 недели. Осевший на растения радиостронций всасывается в результате активных биологических процессов. Интенсивность всасывания зависит от растворимости частиц и вида растений и может достигать нескольких процентов.

Усвоение радиостронция из почвы определяется его биологической доступностью и прежде всего растворимостью, агрохимическими свойствами почвы, видом растений. Особое значение имеет содержание в почве обменного кальция. При оценке уровней загрязнения используют отношение 90 Sr : Ca, выраженное в стронциевых единицах (1 CE = $10 \div 12$ Ku 90 Sr на 1 г Ca). Накопление достигает $300 \div 1000$ пКи на 1 мКи/м². В больших количествах стронций накапливается в бобовых, корнеплодах, и в меньшей мере (в 3–7 раз) в злаковых.

Животным радиоактивный стронций в основном поступает с кормом и в меньшей степени с водой (около 2 %). Переход нуклида зависит от его биологической доступности, видовых и возрастных особенностей животных и их физиологического состояния. У молодых животных всасываемость стронция выше. В возрасте нескольких дней она практически достигает 100 %, что связано с высокой проницаемостью стенок кишечника. С увеличением возраста всасываемость снижается. Так у взрослых животных крупного рогатого скота, овец, коз, свиней, кур всасываемость оценивается в $6 \div 16$; $7 \div 10$; $3 \div 14$; 14; $50 \div 80$ % соответственно. Максимальная концентрация нуклида в крови регистрировалась у коров, коз и свиней через 12-24; 12 и 6-12 ч. соответственно после поступления стронция в организм. В крови стронций циркулирует в некомплексной форме и лабильно связан с белками.

Стронций относится к типичным остеотропным радионуклидам. По величине отложения нуклида в скелете сельскохозяйственных животных можно расположить в ряд: крупный рогатый скот < козы < овцы < свиньи < куры. Из костной ткани стронций выводится медленно. У молодых животных нуклид выводится значительно быстрее, чем у взрослых. Увеличение содержания кальция в корме ускоряет выведение. Помимо

скелета наибольшая концентрация отмечена в печени и почках, минимальная— в мышцах и особенно в жире, где концентрация в 4–6 раз меньшая, чем в других мягких тканях.

В условиях хронического поступления стронция животным, что имеет практическое значение, кратность накопления (содержание нуклида в организме по сравнению с ежедневным поступлением) зависит от возраста животных и равна $10 \div 20$. Содержание стронция в период равновесного состояния в 1 кг мышц коров, овец, коз, свиней и кур достигает 4, 8, 20, 26 и 45 % суточного поступления. Содержание стронция при хроническом поступлении у взрослых коров, овец, коз, свиней и кур составляло в скелете: 6; 950; 770; 220 и 16; мышцах: 3; 0.2; 0.4; 0.2 и 0.3; других органах: $0.4 \div 0.6$; $0.3 \div 0.6$; $0.2 \div 0.6$; $0.2 \div 0.3$ и $0.2 \div 0.8$ % суточного поступления.

У лактирующих животных стронций в значительных количествах выводится с молоком. Суточное выведение у коров разной продуктивности достигает $0.2 \div 5~\%$, у коз 1.3~%, овец $1 \div 6~\%$ в 1 литре от суточного поступления. Из глобальных выпадений содержание 90 Sr в молоке колеблется от $0.3 \div 0.8~\%$ в 1 л суточного поступления. Переход 90 Sr из корма в молоко коров оценивается в 0.1~% на 1 л удоя, а при хроническом поступлении нуклида в $0.2 \div 0.3~\%$ в 1 литре. Переход 90 Sr из рациона в яйцо не превышает 40~% суточного поступления радионуклида, а у низкопродуктивных кур может достигать 60~%. Содержание стронция в скорлупе достигает 96~%, в желтке и белке содержится соответственно 3.5~и 0.2~%.

Содержание стронция в гидробионтах зависит от концентрации нуклида в воде и степени её минерализации. Так у рыб Балтийского моря содержание стронция в 5 раз больше, чем у рыб Атлантического океана. Коэффициент накопления достигает $10 \div 100$, в основном стронций депонируется в скелете.

3 Биологическое действие (кинетика обмена, токсичность, клиника поражений, отдаленные последствия)

Биологическому действию радиоактивного стронция посвящены многочисленные публикации отечественных и зарубежных авторов. Однако, многие вопросы, особенно биологической опасности малых количеств стронция в условиях хронического его поступления человеку остаются недостаточно исследованными. Об опасности малых доз ионизирующих излучений имеются противоречивые суждения и эта проблема была и

остаётся одной из наиболее сложных в радиобиологии и радиационной медицине.

Радиоактивный стронций относится к остеотропным биологически опасным радионуклидам. Как чистый бета-излучатель основную опасность он представляет при поступлении в организм. В таблице 4 на с. 15 для сравнение приведена токсичность ⁸⁹Sr, ⁹⁰Sr и других биологически значимых α - и β -излучающих радионуклидов. Населению нуклид в основном поступает с загрязнёнными продуктами. Ингаляционный путь имеет меньшее значение. Не исключается поступление нуклида через раневые и ожоговые поверхности. Растворимые соединения стронция хорощо всасываются в кишечнике. Резорбция зависит от возраста человека, физиологического состояния, характера питания и особенно содержания в рационе кальция. Она колеблется от 10 до 60 %. В больших количествах стронций всасывается у детей. Для взрослого человека МКРЗ рекомендует величину всасывания равной 30 %. Радиостронций избирательно откладывается в костях, особенно у детей, подвергая кости и заключённый в них костный мозг постоянному облучению. В костях стронций накапливается неравномерно. В эпифизе и метафизе первоначальная концентрация нуклида примерно в 2.5 раза выше, чем в диафизе. В других органах и тканях стронций депонируется в значительно меньших количествах.

Выводится стронций из организма в основном через кишечник. Кинетику выведения можно описать суммой трёх экспонент: 73, 10 и 17 % с периодом соответственно 3, 44 и 4000 суток. Быстро выводящиёся компонент отражает выведение нуклида из мягких тканей, медленно выводящий — из скелета.

Биологическое действие радиоактивного стронция многообразно и связано с распределением поступившего в организм нуклида и формируемых доз. При поступлении равных количеств 89 Sr и 90 Sr величины поглощённых доз и время их формирования различны, что связано с большим периодом полураспада 90 Sr и высокой β -энергией его дочернего нуклида 90 Y ($E_{\beta}=2.26$ MэB). При поступлении 89 Sr доза формируется в течение сравнительно короткого времени, а при поступлении 90 Sr в течение многих лет. Дозовые коэффициенты Е для 89 Sr и 90 Sr равны соответственно для быстро выводящей фракции $1.0 \div 9$ и $2.4 \div 9$ Зв/Бк и для медленно выводящей — $7.5 \div 9$ и $1.5 \div 7$ Зв/Бк. Спустя 1 год доза от стронция 90 Sr в десять раз большая, а через 20 лет в 150 раз, чем от 89 Sr.

Биологическое действие радиоактивного стронция исследовали на многих видах животных. Практический интерес представляют опыты на собаках, поскольку радиочувствительность их примерно такая же, как и у человека. При поступлении в организм остроэффективных количеств

развивалась картина острого лучевого поражения с типичными гематологическими нарушениями. Острые поражения у собак развивались при поступлении $3.7 \div 11.1 \cdot 10^7~\rm K/kr$ массы тела. При поступлении радиостронция в 100 раз меньших количествах наблюдали хроническое лучевое поражение с соответствующими гематологическими нарушениями, развитием лейкозов и костных опухолей в отдалённые сроки.

Особый практический интерес представляет хроническое поступление радиостронция животным. В опытах на собаках, получавших в течение 2–3 лет ежедневно $^{90}{\rm Sr}$ в количествах $3.7\cdot 10^3~{\rm Kk/kr}$ массы тела развивалось хроническое поражение с индукцией лейкозов и остеосарком. При введении $7.4 \cdot 10^2$ Бк/кг ежедневно в течение 2-3.5 лет регистрировали увеличение в 3-5 раз числа доброкачественных и злокачественных опухолей, в том числе в эндокринных органах и молочных железах. У потомства отмечена пониженная жизнеспособность. Следует отметить трудоёмкие исследования на крысах. Животные в течение всей жизни ежедневно получали 90 Sr в количестве 5, 4, 2, 1, 0.5; 0.05, 0.005, 0.0005, 0.00005 мкКи на крысу. Начальные изменения костных структур к концу их жизни выявлены у животных, получавших ежедневно по 0.05 мкКи стронция. Минимальное ежедневно вводимое количество, которое способствовало развитию сосудистых, воспалительных, дистрофических, новообразовательных процессов и снижало продолжительность жизни животных, составляло $0.5~{\rm mkKu}^{-90}{\rm Sr}$. Максимальная величина поглощённой дозы, приводящая к снижению числа ядросодержащих клеток в костном мозге, соответствовала 10 Гр, а минимальная бластомогенная доза $-40~\Gamma$ р. Продолжительность жизни снижается при дозах свыше 40 Гр.

Из приведённых данных следует, что у собак и крыс патологические нарушения регистрировались при достаточно больших дозах.

4 Облучение населения

Техногенное радиоактивное загрязнение внешней среды стало источником хронического внешнего и внутреннего облучения населения. Облучение, как правило, носит комбинированный характер — сочетание внешнего и внутреннего сложными смесями радионуклидов. Свой вклад в облучение вносят и радиоизотопы стронция (таблица 5 на с. 16). Дозы облучения за счёт глобального ⁹⁰Sr невелики (таблица 6 на с. 18). Ожидаемые дозы облучения за счёт ингаляционного поступления радионуклида в легкие также небольшие. Они составляют для всего Земного шара, умеренных широт Северного и Южного полушарий соответственно $4.7 \cdot 10^{-5}$; $1.2 \cdot 10^{-4}$ и $3.4 \cdot 10^{-5}$ Гр. Пикового значения 150 мкЗв эффективная доза достигла в 1963 году. К 2000 году доза снизилась до ≈ 5 мкЗв и обусловлена находящимися в окружающей среде 14 С, 90 Sr, 137 Cs. Годовые дозы в период из максимального значения не превышали 7 % фонового уровня. Облучение в таких дозах не могло вызвать острых хронических поражений. О токсичности радиоактивного стронция по данным экспериментальных исследований было сказано выше. Отметим, что предел годового поступления ПГП 89 Sr и 90 Sr составляет $2.7 \cdot 10^6$ и $8.9 \cdot 10^5$ Бк/год и допустимая объёмная концентрация ДОА — $1.1 \cdot 10^3$ и $33 \cdot 10^2$ Бк/м 3 .

Более высокие дозы облучения населения были в районах ближних выпадений радионуклидов при наземных ядерных взрывах. В СССР проведено 32 наземных взрыва, из них 30 на Семипалатинском полигоне, из них при четырёх за пределами полигона в ближней зоне сформировались локальные радиоактивные следы. В зоне выпадений радионуклидов оказался 41 населённый пункт. Дозы облучения населения характеризовались широким диапазоном. В одиннадцати пунктах они превысили 15 м Γ р и в пяти — 100 м Γ р. Максимальные дозы достигали 1.5 \div 1.9 Γ р. Дозы формировались в основном за счёт короткоживущих радионуклидов, среди них особое значение имели радиоизотопы йода. Облучение в таких дозах могло вызвать лучевую реакцию, а при максимальных дозах не исключается развитие острого лучевого поражения лёгкой степени. Жители подверглись и внутреннему облучению радионуклидами, поступившими в организм с молоком, овощами, мясом . Дозы облучения щитовидной железы радиоизотопами йода у взрослых могли быть в пределах $100 \div 250$ мГр, а у детей $0.4 \div 3.4$ Гр.

В подавляющем большинстве населённых пунктов дозы облучения были на уровне доз от глобальных выпадений, которые по оценкам НК-ДАР в среднем составляли $4.5~\mathrm{m}$ 3в. Вклад внутреннего облучения за счёт перорального и ингаляционного поступлений радионуклидов и внешнего облучения составил соответственно $72, 5~\mathrm{u}~24~\%$. Основное значение в длительном формировании доз имели $^{137}\mathrm{Cs}~\mathrm{u}~^{90}\mathrm{Sr}$.

Загрязнение при радиационных авариях обычно носит локальный характер, за исключением аварии на ЧАЭС. При аварии в Кыштыме, благодаря принятым мерам защиты, включая отселение населения с наиболее загрязнённых территорий, случаев острых радиационных поражений не было зарегистрировано. Дозы внешнего облучения могли составить $0\div17~\mathrm{c}\Gamma\mathrm{p}$, ЖКТ $-0.7\div150~\mathrm{c}\Gamma\mathrm{p}$, красного костного мозга $-0.5\div0.7~\mathrm{c}\Gamma\mathrm{p}$, лёгких $-0.1\div2.7~\mathrm{c}\Gamma\mathrm{p}$, эффективная доза $-0.4\div52~\mathrm{c}\Gamma\mathrm{p}$. При аварии на ЧАЭС распространение выброшенных радионуклидов приняло практически глобальный характер. Дозы внешнего облучения населения в

районах радиоактивного загрязнения не превышали десятков мГр. Основную опасность в начальный период представляло поступление радиоактивного йода с пищей. Тиреоидная патология, особенно у детей, стала определяющей. Дозы облучения щитовидной железы в отдельных случаях достигали единиц грей. В подавляющем большинстве случаев они были ниже. После распада радиоактивных изотопов йода основным источником внешнего и внутреннего облучения стал радиоактивный цезий. Доля стронция в облучении значительно меньший.

5 Профилактика. Неотложная помощь

- 1. В регионах радиоактивного загрязнения меры защиты населения должны быть направлены
 - на снижение содержания радионуклидов в растительных и животных продуктах питания с помощью агромелиоративных и зооветеринарных мер. У животных, получавших сорбенты стронция (сульфат бария, бентонит и на их основе модифицированные препараты), при аварии на ЧАЭС с помощью указанных мер удавалось добиться 3–5 кратного снижения депонирования радионуклидов в костной ткани животных;
 - на технологическую переработку загрязнённого сырья;
 - на кулинарную обработку пищевых продуктов, замену загрязнённых пищевых продуктов на чистые.
- 2. При работе с радиоактивным стронцием необходимо соблюдать санитарные правила и нормы радиоактивной безопасности с применением специальных мер защиты в соответствии с классом работ.
- 3. Неотложная помощь при загрязнении кожных покровов: обработка 5 % раствором пентацина, 5 % раствором Na₂-ЭДТА, раствором лимонной или соляной кислоты, препаратом "Защита", пастой НЭДЭ, моющими порошками, мылом.
- 4. При пероральном поступлении радиостронция назначают адсобар или сернокислый барий 25.0:200.0, альгинат натрия 15.0:200.0, полисурмин 4.0:200.0. Обильное промывание желудка, рвотные средства, мочегонные, клизмы. При поступлении радиостронция в органы дыхания обильное промывание носоглотки и полости рта, отхаркивающие и те же средства, что и пероральном поступлении нуклида.

- 5. В условиях хронического поступления радиостронция для снижения его всасывания назначают альгисорб модифицированный альгинат кальция: взрослым и детям старше 14 лет по 5.0 г 3 раза в день, детям от 6 до 14 лет по 3.0 г 3 раза в день, детям от 1 года до 6 лет по 1.5 г 4 раза в день.
- 6. Все защитные мероприятия следует проводить под постоянным дозиметрическим контролем внешней среды, оценки внешнего загрязнения и поступления радионуклидов в организм.
- 7. В профилактике последствий облучения большое внимание следует уделять повышению резистентности организма пострадавших (рациональное питание, здоровый образ жизни, спорт и др.)

6 Заключение

Радиоактивный стронций (⁸⁹Sr и ⁹⁰Sr) относится к биологически значимым радионуклидам и характеризуется высокой токсичностью. Его доля в глобальном радиоактивном загрязнении внешней среды и облучении населения значительна. Облучение носит хронический комбинированный характер. Дозы облучения в подавляющем большинстве случаев можно отнести к категории малых с низкой мощностью дозы. Об опасности облучения в таких дозах существуют противоречивые суждения. МКРЗ, НКДАР при ООН, НКРЗ РФ считают, что облучение в любой дозе отличной от нуля (даже при повреждении всего одной клетки) может в отдалённые сроки проявиться в форме стохастических эффектов — злокачественных новообразований и генетических нарушений. Численное значение их крайне мало. По мере увеличения тканевых доз повреждается всё больше клеток и увеличивается вероятность появления стохастических эффектов. Такой подход к оценке малых доз ионизирующих излучений остаётся лишь гипотезой. Прямые доказательства её отсутствуют. Напротив, имеются данные, что и для стохастических эффектов существует порог, что соответствует общебиологическим законам природы. В организме в процессе эволюции выработались и генетически закрепились системы защиты, обеспечивающие гомеостаз организма. Вредное действие различных агентов, в том числе ионизирующих излучений, начинает проявляться после превышения порога. Для детерминированных эффектов порог установлен. Установление величины порога для стохастических эффектов имеет важное практическое значение, было и остаётся одной из наиболее актуальных проблем радиобиологии.

Таблица 1

Ядерно-физические свойства основных радиоактивных изотопов стронция

			энє вкитэд)	Средняя энергия излучения,	
Радио-	$\mathrm{T}_{1/2}$	Тип	$_{ m IeM}$	$\mathrm{M}3\mathrm{B/(Bk\cdot c)}$	Дочерний
нуклид		распада	характери-	β -излучение,	радио-
			стическое,	конвер-	нуклид
			γ- и	сионные	(выход)
			аннигиля-	электроны и	
			ционное	электроны	
			излучение	Оже	
$^{80}\mathrm{Sr}$	100	39	$8.00 \cdot 10^{-3}$	$5.46 \cdot 10^{-3}$	$^{80}\mathrm{Rb}$
	мин.				радиоакт.
$^{81} m Sr$	25.5	39,	1.38	$9.96 \cdot 10^{-1}$	$^{81}{ m Rb}$
	мин.	β^+			радиоакт.
$^{82} m Sr$	52	68	$7.87 \cdot 10^{-3}$	$5.40 \cdot 10^{-3}$	$^{82}\mathrm{Rb}$
	CVT.				радиоакт.

⁸³ Rb радиоакт.	$^{85}\mathrm{Sr}$ радиоакт.	(0.879)	85 Rb cra6.	⁸⁵ Rb cra6.	⁸⁷ Rb радиоакт.	$(3 \cdot 10^{-3})$	⁸⁷ Sr cra6. (0.997)	⁸⁹ Y cra6.	^{90}Y радиоакт.	91m Y радиоакт.	(0.578)	⁹¹ Ү радиоакт.	(0.422)	92Ү радиоакт.
0^{-1}	0^{-2}			0-3	0^{-2}			0-1	0-1	0-1				0^{-1}
$19 \cdot 10$	$1.22 \cdot 10^{-2}$			$7 \cdot 1$	$6.69 \cdot 10^{-2}$			$5.83 \cdot 10^{-1}$	$1.96 \cdot 10^{-1}$	$6.55 \cdot 10^{-1}$				$1.96 \cdot 10^{-1}$
1.4	1.2			8.9				3.0	1.9	6.5				1.9
0^{-1}	-0^{-1}			$5.11 \cdot 10 - 1 8.97 \cdot 10^{-3}$	$3.20 \cdot 10^{-1}$			0-2		0^{-1}				-
79 · 1	$2.19 \cdot 10^{-1}$			$11 \cdot 1$	$20 \cdot 1$			$8.45 \cdot 10^{-5}$		$6.93 \cdot 10^{-1}$				1.34
7.				5.	3.5			$\overset{\circ}{\infty}$		9.9				
39, β^+ 7.79 · 10 ⁻¹ 1.49 · 10 ⁻¹	3Э, ИП			33	3Э, ИП			ı						1
39,	39,			8	39,			β	β^{-}	β				β
ac.	ин.			yT.	ac.			yT.	тет	٠ <u>.</u>				ac.
32.4 час.	69.5 мин.			64.84 cyr.	2.805 час.			50.5 cyr.	29.12 лет	9.5 час.				2.71 час.
					2.8					6				2
$^{83}\mathrm{Sr}$	$85m\mathrm{Sr}$			$^{85}\mathrm{Sr}$	$ { m ^{1}S}_{m28}$			$^{89}\mathrm{Sr}$	$^{90}\mathrm{Sr}$	$^{91}\mathrm{Sr}$				$^{92}\mathrm{Sr}$
<u>∞</u>	85		-	×	87.			∞́	6	6			-	9.

Таблица 2

 ${f B}$ ыход $^{89}{
m Sr}$ и $^{90}{
m Sr}$ (%) в реакциях деления урана и плутония

		Энергия, МэВ	н, МэВ	$^{235}\mathrm{U}$	$^{235}\mathrm{U}$	$^{239}\mathrm{Pu}$	Оценка
\vdash	$T_{1/2}$	β -		(мед-	(6bic-	(быс-	ОП
		4ac-	излу-	ленные	трые	трые	глоба-
		тицы	чение	нейт-	нейт-	нейт-	JIBHBIM
		$(\mathrm{E}_{\mathrm{marc}})$		роны)	(ічнод	(ічод	выпа-
							дениям
	50.5	1.46		4.79	4.15	1.44	2.6
F 3	CyT.						
0	29.12	0.54		5.57	4.38	2.23	3.5
_	лет						

Таблица 3

Содержание 89 Sr и 90 Sr в продуктах деления в зависимости от возраста (в % β -активности)

	7	7	Bo3	Возраст продуктов	ОДУКТ	DB 1	7	5
_			10.	_	က	_	Ç	
Ч.		CyT.	CyT.	Mec.	Mec.	год	лет	лет
900.0		$0.228 \mid 2.74$	2.74	6.7	8.37	1.97	_	
$3.1 \div 5 \mid 0.001 \mid 0.02 \mid 0.106 \mid 0.68$		0.001	0.02	0.106	89.0	3.0	27.44	47.08

Таблица 4

Количество радионуклидов, вызывающее 50 % гибель крыс в течение 30 суток $(CД_{50/30})$

Радио-	Количество,	Радио-	Количество,
нуклид	кБк/г	нуклид	к $\mathrm{Б}$ к $/\Gamma$
$^{89}\mathrm{Sr}$	166	$^{140}\mathrm{La}$	526
⁹⁰ Sr	55	¹⁴⁴ Ce	126
⁹⁰ Y	259	¹⁴⁷ Pm	259
⁹¹ Y	136	$^{237}\mathrm{Np}$	0.01
⁹⁵ Nb	311	²³⁹ Pu	2.18
¹⁰⁶ Ru	136	$^{241}\mathrm{Am}$	4.07
¹³¹ I	148	²⁴⁴ Cm	4.07
$^{137}\mathrm{Cs}$	80	$^{252}\mathrm{Cf}$	0.44
$^{140}\mathrm{Ba}$	74		

Таблица 5

Вклад важнейших радионуклидов в облучение населения Земли вследствие ядерных испытаний в атмосфере

	Ожидаемая	Вклад в
Радионуклид	эффективная	суммарную
	эквивалентная	дозу, %
	доза, мкЗв	
$^{14}\mathrm{C}$	2600	69*
$^{137}\mathrm{Cs}$	540	14
$^{95}{ m Zr}$	200	5.3
$^{90}\mathrm{Sr}$	120	3.2
¹⁰⁶ Ru	83	2.2
¹⁴⁴ Ce	54	1.4
³ H	47	1.2
¹³¹ I	33	0.9
²³⁹ Pu	27	0.7
Все прочие	86	2
Всего (округленно)	3790	100

 * Ожидаемая доза за счёт $^{14}{\rm C}$ будет формироваться в течение тысяч лет. Доля этой дозы, накопленной к 2000 году, составила 7.7 % от приведённого в таблице 5 значения.

Таблица 6 Ожидаемые дозы за счёт перорального поступления $^{90}\mathrm{Sr}$

	Ожидаем	лая доза	Ожид	аемая
	(10^{-4})	Γ p)	коллекти	вная доза
Район			(105 че	ел.∙Гр)
		Клетки,		Клетки,
	Костный	высти-	Костный	высти-
	мозг	лающие	МОЗГ	лающие
		костные		костные
		поверх-		поверх-
		ности		ности
Весь	5.7	13	23	50
земной шар				
Северное	6.2	14	22	49
полушарие				
Южное	1.6	3.4	0.7	1.5
полушарие				
Умеренная				
зона				
Северного	9.4	21	5.2	11
полушария				
$(40-50^{\circ})$				
Умеренная				
зона				
Южного	2.6	5.7	0.01	0.02
полушария				
$(40-50^{\circ})$				